The Weak Field Approximation of General Relativity and the Problem of Precession of the Perihelion for Mercury †
Abstract
:1. Introduction
2. General Relativity
3. Linear Approximation of GR—Justification
4. Linear Approximation of GR—The Metric
5. Linear Approximation of GR—The Trajectory
5.1. “Angular Momentum”
5.2. “Energy”
5.3. Polar Coordinates
5.4. Integration of the Equations of Motion
6. Metric Correction and the Gravitational Potential
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Verrier, U. Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de cette planète. Comptes Rendus Hebd. Séances L’Académie Sci. 1859, 49, 379–383. (In France) [Google Scholar]
- Carter, W.E.; Carter, M.S. Simon Newcomb, America’s first great astronomer. Phys. Today 2009, 62, 46. [Google Scholar] [CrossRef]
- Levenson, T. The Hunt for Vulcan. And How Albert Einstein Destroyed a Planet, Discovered Relativity, and Deciphered the Universe; Random House Publishing Group: New York, NY, USA, 2015; p. 80. [Google Scholar]
- Baum, R.P.; Sheehan, W. In Search of Planet Vulcan: The Ghost in Newton’s Clockwork; Basic Books: New York, NY, USA, 2003. [Google Scholar]
- Albert, E. The Foundation of the General Theory of Relativity. Annalen der Physik. 1916, 49, 769–822. [Google Scholar]
- Albert, E. Näherungsweise Integration der Feldgleichungen der Gravitation. In Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin; Part 1; The Prusssian Academy of Sciences: Berlin, Germany, 1916; pp. 688–696. [Google Scholar]
- Clemence, G.M. The Relativity Effect in Planetary Motions. Rev. Mod. Phys. 1947, 19, 361–364. [Google Scholar] [CrossRef]
- Park, R.S.; Folkner, W.M.; Konopliv, A.S.; Williams, J.G.; Smith, D.E.; Zuber, M.T. Precession of Mercury’s Perihelion from Ranging to the MESSENGER Spacecraft. Astron. J. 2017, 153, 121. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravitation—Foundations and Frontiers; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Biswas, A.; Mani, K.R. Relativistic perihelion precession of orbits of Venus and the Earth. Cent. Eur. J. Phys. 2008, 6, 754–758. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Mannheim, P.D.; Kazanas, D. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves. Astrophys. J. 1989, 342, 635. [Google Scholar] [CrossRef]
- Mannheim, P.D. Linear Potentials and Galactic Rotation Curves. Astrophys. J. 1993, 149, 150. [Google Scholar] [CrossRef]
- Mannheim, P.D. Are Galactic Rotation Curves Really Flat? Astrophys. J. 1997, 479, 659. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.W. Scalar-Tensor-Vector Gravity Theory. J. Cosmol. Astropart. Phys. 2006, 2006, 4. [Google Scholar] [CrossRef]
- Corda, C. Interferometric detection of gravitational waves: The definitive test for General Relativity. Int. J. Mod. Phys. D 2009, 18, 2275. [Google Scholar] [CrossRef]
- Zwicky, F. On a New Cluster of Nebulae in Pisces. Proc. Natl. Acad. Sci. USA 1937, 23, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Volders, L.M.J.S. Neutral Hydrogen in M33 and M101. Bull. Astr. Inst. Netherl. 1959, 14, 323. [Google Scholar]
- Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.K., Jr.; Thonnard, N. Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc). Astrophys. J. 1980, 238, 471. [Google Scholar] [CrossRef]
- Yahalom, A. The effect of Retardation on Galactic Rotation Curves. J. Phys. Conf. Ser. 2019, 1239, 012006. [Google Scholar] [CrossRef]
- Yahalom, A. Retardation Effects in Electromagnetism and Gravitation. In Proceedings of the Material Technologies and Modeling the Tenth International Conference, Ariel University, Ariel, Israel, 20–24 August 2018. [Google Scholar]
- Yahalom, A. Dark Matter: Reality or a Relativistic Illusion? In Proceedings of the Eighteenth Israeli-Russian Bi-National Workshop 2019, The Optimization of Composition, Structure and Properties of Metals, Oxides, Composites, Nano and Amorphous Materials, Ein Bokek, Israel, 17–22 February 2019. [Google Scholar]
- Wagman, M. Retardation Theory in Galaxies. Ph.D. Thesis, Senate of Ariel University, Samria, Israel, 2019. [Google Scholar]
- Yahalom, A. Lorentz Symmetry Group, Retardation, Intergalactic Mass Depletion and Mechanisms Leading to Galactic Rotation Curves. Symmetry 2020, 12, 1693. [Google Scholar] [CrossRef]
- Yahalom, A. Effects of Higher Order Retarded Gravity. Universe 2021, 7, 207. [Google Scholar] [CrossRef]
- Yahalom, A. The Cosmological Decrease of Galactic Density and the Induced Retarded Gravity Effect on Rotation Curves. J. Phys. Conf. Ser. 2021, 1956, 012002. [Google Scholar] [CrossRef]
- Yahalom, A. Tully—Fisher Relations and Retardation Theory for Galaxies. Int. J. Mod. Phys. 2021, 30, 2142008. [Google Scholar] [CrossRef]
- Yahalom, A. Lensing Effects in Retarded Gravity. Symmetry 2021, 13, 1062. [Google Scholar] [CrossRef]
- Sauer, T. Nova Geminorum 1912 and the Origin of the Idea of Gravitational Lensing. Arch. Hist. Exact Sci. 2008, 62, 1–22. [Google Scholar] [CrossRef]
- Pais, A. Subtle is the Lord...: The Science and Life of Albert Einstein; Oxford University Press: Oxford, UK, 1982; ISBN 978-0-19-853907-0. [Google Scholar]
- Weinstein, G. Einstein and the problem of confirmation by previously known evidence: A comment on Michel Janssen and Jurgen Renns Einstein and the Perihelion Motion of Mercury. arXiv 2022, arXiv:2201.00807v1. [Google Scholar]
- Dyson, F.W.; Eddington, A.S.; Davidson, C.R. A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Solar eclipse of May 29, 1919. Phil. Trans. R. Soc. A. 1920, 220, 291–333. [Google Scholar] [CrossRef]
- Kennefick, D. Not Only Because of Theory: Dyson, Eddington and the Competing Myths of the 1919 Eclipse Expedition. In Proceedings of the 7th Conference on the History of General Relativity, Tenerife, Spain, 10–14 March 2005; Volume 0709, p. 685. [Google Scholar] [CrossRef]
- Corbelli, E. Dark matter and visible baryons in M33. Mon. Not. R. Astron. Soc. 2003, 342, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Narlikar, J.V. Introduction to Cosmology, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Eddington, A.S. The Mathematical Theory of Relativity; Cambridge University Press: Cambridge, UK, 1923. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1972. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman & Company: New York, NY, USA, 1973. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Yahalom, A. The Geometrical Meaning of Time. Found. Phys. 2008, 38, 489–497. [Google Scholar] [CrossRef]
- Yahalom, A. The Gravitational Origin of the Distinction between Space and Time. Int. J. Mod. Phys. D 2009, 18, 2155–2158. [Google Scholar] [CrossRef]
- Křížek, M. Relativistic perihelion shift of Mercury revisited. Astron. Nachrichten 2022, 343, e2022001. [Google Scholar] [CrossRef]
- Liénard, A. Champ électrique et magnétique produit parune charge concentrée en un point et animée d’un mouvement quelconque. L’éclairage Electrique 1898, 16, 5. [Google Scholar]
- Wiechert, E. Elektrodynamische Elementargesetze. Annalen der Physik 1901, 309, 667–689. [Google Scholar] [CrossRef] [Green Version]
- Křížek, M. Influence of celestial parameters on Mercury’s perihelion shift. Bulg. Astron. J. 2017, 27, 41. [Google Scholar]
- Tuval, M.; Yahalom, A. Newton’s Third Law in the Framework of Special Relativity. Eur. Phys. J. Plus 2014, 129, 240. [Google Scholar] [CrossRef] [Green Version]
- Yahalom, A. Retardation in Special Relativity and the Design of a Relativistic Motor. Acta Phys. Pol. 2017, 131, 1285–1288. [Google Scholar] [CrossRef]
- Tuval, M.; Yahalom, A. Momentum Conservation in a Relativistic Engine. Eur. Phys. J. Plus 2016, 131, 374. [Google Scholar] [CrossRef]
- Yahalom, A. Preliminary Energy Considerations in a Relativistic Engine. In Proceedings of the Israeli-Russian Bi-National Workshop, The Optimization of Composition, Structure and Properties of Metals, Oxides, Composites, Nano—and Amorphous Materials, Ariel, Israel, 28–31 August 2017; pp. 203–213. [Google Scholar]
- Rajput, S.; Yahalom, A. Material Engineering and Design of a Relativistic Engine: How to Avoid Radiation Losses. In Advanced Engineering Forum; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2020; Volume 36, pp. 126–131. [Google Scholar]
- Rajput, S.; Yahalom, A.; Qin, H. Lorentz Symmetry Group, Retardation and Energy Transformations in a Relativistic Engine. Symmetry 2021, 13, 420. [Google Scholar] [CrossRef]
- Rajput, S.; Yahalom, A. Newton’s Third Law in the Framework of Special Relativity for Charged Bodies. Symmetry 2021, 13, 1250. [Google Scholar] [CrossRef]
- Wright, J.T.; Kanodia, S. Barycentric Corrections for Precise Radial Velocity Measurements of Sunlight. Planet. Sci. J. 2020, 1, 38. [Google Scholar] [CrossRef]
Causes of the Precession of Perihelion for Mercury (Arcsec/Julian Century) | Cause |
---|---|
532.3035 | Gravitational tugs of other Solar bodies |
0.0286 | Oblateness of the Sun (quadruple moment) |
42.9799 | General Relativity effect (Schwarzschild—like) |
−0.0020 | Lense-Thirring precession |
575.31 | Total predicted |
574.10 ± 0.65 | Observed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahalom, A. The Weak Field Approximation of General Relativity and the Problem of Precession of the Perihelion for Mercury. Symmetry 2023, 15, 39. https://doi.org/10.3390/sym15010039
Yahalom A. The Weak Field Approximation of General Relativity and the Problem of Precession of the Perihelion for Mercury. Symmetry. 2023; 15(1):39. https://doi.org/10.3390/sym15010039
Chicago/Turabian StyleYahalom, Asher. 2023. "The Weak Field Approximation of General Relativity and the Problem of Precession of the Perihelion for Mercury" Symmetry 15, no. 1: 39. https://doi.org/10.3390/sym15010039
APA StyleYahalom, A. (2023). The Weak Field Approximation of General Relativity and the Problem of Precession of the Perihelion for Mercury. Symmetry, 15(1), 39. https://doi.org/10.3390/sym15010039