Some Fractional Integral Inequalities by Way of Raina Fractional Integrals
Abstract
:1. Introduction
2. Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bubeck, S.; Eldan, R. Multi-scale exploration of convex functions and bandit convex optimization. In Proceedings of the 29th Annual Conference on Learning Theory, Columbia University, New York, NY, USA, 23–26 June 2016; pp. 583–589. [Google Scholar]
- Niculescu, C.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006; Volume 23. [Google Scholar]
- Udriste, C. Convex Functions and Optimization Methods on Riemannian Manifolds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1994; Volume 297. [Google Scholar]
- Hassan, A.; Khan, A.R. Inequalities Via (ϖ,β,γ,δ)-Convex Functions. Fract. Differ. Calc. 2022, 12, 13–36. [Google Scholar]
- Dragomir, S.S. On the Hadamard’s inequlality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Latif, M.A.; Kalsoom, H.; Abidin, M.Z. Hermite–Hadamard-Type Inequalities Involving Harmonically Convex Function via the Atangana–Baleanu Fractional Integral Operator. Symmetry 2022, 14, 1774. [Google Scholar] [CrossRef]
- Latif, M.A. Properties of Coordinated h1,h2-Convex Functions of Two Variables Related to the Hermite–Hadamard–Fejér Type Inequalities. Mathematics 2023, 11, 1201. [Google Scholar] [CrossRef]
- Latif, M.A. Some Companions of Fejér Type Inequalities Using GA-Convex Functions. Mathematics 2023, 11, 392. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Lotayif, M. Biconvex functions and mixed bivariational inequalities. Inform. Sci. Lett 2021, 10, 469–475. [Google Scholar]
- Tariq, M.; Sahoo, S.K.; Ntouyas, S.K. Some Refinements of Hermite–Hadamard Type Integral Inequalities Involving Refined Convex Function of the Raina Type. Axioms 2023, 12, 124. [Google Scholar] [CrossRef]
- Xu, J.Z.; Wang, W. Hermite–Hadamard type inequalities for the s– HH convex functions via k-fractional integrals and applications. J. Math. Inequal. 2020, 14, 291–303. [Google Scholar]
- You, X.; Adil Khan, M.; Ullah, H.; Saeed, T. Improvements of Slater’s inequality by means of 4-convexity and its applications. Mathematics 2022, 10, 1274. [Google Scholar] [CrossRef]
- Youness, E.A. E-convex sets, E-convex functions, and E-convex programming. J. Optim. Theory Appl. 1999, 102, 439–450. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yaldiz, H. On Hermite-Hadamard type inequalities for ϕ-convex functions via fractional integrals. Malays. J. Math. Sci. 2015, 9, 243–258. [Google Scholar]
- Tariq, M.; Ntouyas, S.K.; Shaikh, A.A. A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators. Mathematics 2023, 11, 1953. [Google Scholar] [CrossRef]
- Fejér, L. Über die fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss 1906, 24, 369–390. [Google Scholar]
- Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Vivas-Cortez, M. Some New Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-Convex interval-valued Functions. Mathematics 2021, 10, 74. [Google Scholar] [CrossRef]
- Rashid, S.; Khalid, A.; Karaca, Y.; Chu, Y.M. Revisiting fejér–hermite–hadamard type inequalities in fractal domain and applications. Fractals 2022, 30, 2240133. [Google Scholar] [CrossRef]
- Vivas-Cortez, M. Fejér type inequalities for (s,m)-convex functions in second sense. Appl. Math. Inf. Sci. 2016, 10, 1689–1696. [Google Scholar] [CrossRef]
- Latif, A.; Hussain, R. New Hadamard-type inequalities for E-convex functions involving generalized fractional integrals. J. Inequal. Appl. 2022, 2022, 35. [Google Scholar] [CrossRef]
- Rashid, S.; Khalid, A.; Bazighifan, O.; Oros, G.I. New modifications of integral inequalities via P-convexity pertaining to fractional calculus and their applications. Mathematics 2021, 9, 1753. [Google Scholar] [CrossRef]
- Budak, H.; Sarikaya, M.Z. On refinements of Hermite-Hadamard type inequalities with generalized fractional integral operators. Frac. Differ. Calc. 2021, 11, 121–132. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Fernandez, A.; Özarslan, M.A.; Baleanu, D. On fractional calculus with general analytic kernels. Appl. Math. Comput. 2019, 354, 248–265. [Google Scholar] [CrossRef]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 247, 1–16. [Google Scholar] [CrossRef]
- Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Al-Moneef, A.A. New Hermite–Hadamard Integral Inequalities for Geometrically Convex Functions via Generalized Weighted Fractional Operator. Symmetry 2022, 14, 1440. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- Obeidat, N.A.; Bentil, D.E. New theories and applications of tempered fractional differential equations. Nonlinear Dyn. 2021, 105, 1689–1702. [Google Scholar] [CrossRef]
- Sabzikar, F.; Meerschaert, M.M.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Luo, M.J.; Raina, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Vivas-Cortez, M.; Kashuri, A.; Hernández, J.E.H. Trapezium-type inequalities for Raina’s fractional integrals operator using generalized convex functions. Symmetry 2020, 12, 1034. [Google Scholar] [CrossRef]
- Mitrinovic, D.S.; Vasic, P.M. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970; Volume 1. [Google Scholar]
- Işcan, I. Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babeş Bolyai Math. 2015, 60, 355–366. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Latif, A.; Hussain, R. Some Fractional Integral Inequalities by Way of Raina Fractional Integrals. Symmetry 2023, 15, 1935. https://doi.org/10.3390/sym15101935
Vivas-Cortez M, Latif A, Hussain R. Some Fractional Integral Inequalities by Way of Raina Fractional Integrals. Symmetry. 2023; 15(10):1935. https://doi.org/10.3390/sym15101935
Chicago/Turabian StyleVivas-Cortez, Miguel, Asia Latif, and Rashida Hussain. 2023. "Some Fractional Integral Inequalities by Way of Raina Fractional Integrals" Symmetry 15, no. 10: 1935. https://doi.org/10.3390/sym15101935
APA StyleVivas-Cortez, M., Latif, A., & Hussain, R. (2023). Some Fractional Integral Inequalities by Way of Raina Fractional Integrals. Symmetry, 15(10), 1935. https://doi.org/10.3390/sym15101935