An Optimal Control Perspective on Classical and Quantum Physical Systems
Abstract
:1. Introduction
2. Key Ideas in Control Theory
2.1. Dynamic Optimization: The Pontryagin Approach
2.2. Open-Loop and Closed-Loop Strategies
- Open-loop strategies that depend only on time: ;
- Closed-loop strategies that depend on the state variable x and time: [33].
2.3. Dynamic Optimization: Bellman theory
3. Classical Mechanics
3.1. Lagrangian Mechanics
3.2. Hamiltonian Mechanics
- The end points of are fixed, that is, and ;
- and are linearly independent.
3.3. Constrained Systems in Hamiltonian Mechanics
3.4. Optimal Control Theory as an Example of a Constrained System
4. Open/Closed-Loop Strategies and Physics
4.1. Open/Closed-Loop Strategies and Classical Mechanics
4.2. Canonical Transformations and Closed-Loop Strategies
4.3. Quantum Mechanics and Closed-Loop Strategies
5. Some Examples
5.1. The Stationary Case
5.2. The Non-Stationary Case
- The Hamiltonian “one observer” approach with its open-loop -strategies;
- The Hamilton–Jacobi “two observer” approach with its closed-loop -strategies.
- (i)
- The Hamilton–Jacobi Equation is well-defined;
- (ii)
- The solution to the Hamilton–Jacobi Equation gives the same dynamics as the Pontryagin equations.
5.3. The Pure Quantum Limit and Closed-Loop Strategies
5.4. A Non-Canonical Example
5.4.1. A GUP Algebra Depending on
5.4.2. A GUP Algebra Depending on the Momentum
5.5. A Quantum Control Example
5.5.1. Open-Loop Pontryagin Dynamics
5.5.2. Closed-Loop Bellman Dynamics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mantegna, R.N.; Stanley, H.E. An Introduction to Econophysics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Boucheaud, J.P.; Potters, M. Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Baaquie, B.E. Quantum Finance: Path Integrals and Hamiltonians for Option and Interest Rates; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ilinski, K. Physics of Finance: Gauge Modelling in Non–Equilibrium Pricing; Willey: Hoboken, NJ, USA, 2001. [Google Scholar]
- Voit, J. The Statistical Mechanics of Financial Markets; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Sinha, S.; Chatterjee, A.; Chakrabortia, A.; Chakrabarti, B.K. Econophysics: An Introduction; Willey–VCH: Weinheim, Germany, 2010. [Google Scholar]
- Johnson, N.F.; Jefferies, P.; Hui, P.M. Financial Market Complexity: What Physics Can Tell Us about Market Behaviour; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Dash, J. Quantitative Finance and Risk Management: A Physicist’s Approach; World Scientific: Singapore, 2016. [Google Scholar]
- Haven, E. A Black–Scholes Schrödinger option price: ‘bit’ versus ‘qubit’. Phys. A 2003, 324, 201–206. [Google Scholar] [CrossRef]
- Haven, E. A discussion on embedding the Black–Scholes option price model in a quantum physics setting. Phys. A 2002, 304, 507–524. [Google Scholar] [CrossRef]
- Baaquie, B.E. Quantum field theory of treasury bonds. Phys. Rev. E 2001, 64, 016121. [Google Scholar] [CrossRef] [PubMed]
- Baaquie, B.E. Quantum finance Hamiltonian for coupon bond European and barrier options. Phys. Rev. E 2008, 77, 036106. [Google Scholar] [CrossRef] [PubMed]
- Baaquie, B.E. Interest rates in quantum finance: The Wilson expansion and Hamiltonian. Phys. Rev. E 2009, 80, 046119. [Google Scholar] [CrossRef]
- Contreras, M. Stochastic volatility models at ρ =±1 as a second-class constrained Hamiltonian systems. Phys. A 2015, 405, 289–302. [Google Scholar] [CrossRef]
- Contreras, M.; Bustamante, M. Multi-asset Black–Scholes model as a variable second-class constrained dynamical system. Phys. A 2016, 457, 540–572. [Google Scholar]
- Contreras, M.; Pellicer, R.; Villena, M.; Ruiz, A. A quantum model for option pricing: When Black–Scholes meets Schrödinger and its semi–classic limit. Phys. A 2010, 329, 5447–5459. [Google Scholar] [CrossRef]
- Kamien, M.I.; Schwartz, N.L. The Calculus of Variations and Optimal Control in Economics and Management; Elsevier Science: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Sethi, S.P.; Thompson, G.L. Optimal Control Theory: Applications to Management Science and Economics, 2nd ed.; Springer Science + Business Media: New York, NY, USA, 2009. [Google Scholar]
- Caputo, M.R. Foundations of Dynamic Economic Analysis: Optimal Control Theory and Applications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Weitzman, M.L. Income, Wealth, and the Maximum Principle; Harvard University Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Dockner, E.J.; Jorgensen, S.; Long, N.V. Differential Games in Economics and Management Science; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Contreras, M.; Pellicer, R.; Villena, M. Dynamic optimization and its relation to classical and quantum constrained systems. Phys. A 2017, 479, 12–25. [Google Scholar] [CrossRef]
- Hojman, S.A. Optimal Control and Dirac’s Theory of Singular Hamiltonian Systems. Unpublished work.
- Itami, T. Quantum Mechanical Theory of Nonlinear Control (in IFAC Nonlinear Control Systems); IFAC Publications: St. Petersburg, Russia, 2001; p. 1411. [Google Scholar]
- Contreras, M.; Peña, J.P. The quantum dark side of the optimal control theory. Phys. A 2019, 515, 450–473. [Google Scholar]
- Contreras, M.; Peña, J.P.; Aros, R. Second class constraints and the consistency of optimal control theory in phase space. Phys. A 2021, 562, 125–335. [Google Scholar] [CrossRef]
- Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; CRC Press: Boca Raton, FL, USA, 1987. [Google Scholar]
- Bellman, R. The theory of dynamic programming. Bull. Am. Math. Soc. 1954, 60, 503–516. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Q.; Yuan, G. On positivity preservation in nonlinear finite volume method for multi-term fractional subdiffusion equation on polygonal meshes. Nonlinear Dyn 2018, 92, 595–612. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildirim, H. Some new Simpson’s type inequalities for coordinated convex functions in quantum calculus. Math. Methods Appl. Sci. 2020, 44, 4515–4540. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Methods Appl. Sci. 2020, 44, 378–390. [Google Scholar] [CrossRef]
- Erickson, G.M. Differential game models of advertising competitions. J. Political Econ. 1973, 8, 637–654. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Generalized Hamiltonian dynamics. Proc. R. Soc. Lond. A 1958, 246, 326–332. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Lectures on Quantum Mechanics; Yeshiva University Press: New York, NY, USA, 1967. [Google Scholar]
- Teitelboim, C.; Henneaux, M. Quantization of Gauge Systems; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Rothe, H.J.; Rothe, K.D. Classical and Quantum Dynamics of Constrained Hamiltonian Systems (World Scientific Lectures Notes in Physics v81); World Scientific: Singapore, 2010. [Google Scholar]
- Fetter, A.L.; Walecka, J.D. Theoretical Mechanics of Particles and Continua; Dover Publications: Mineola, NY, USA, 2003. [Google Scholar]
- Goldstein, H. Classical Mechanics, 3rd ed.; Pearson: London, UK, 2001. [Google Scholar]
- Contreras, G.M. Dirac’s Method in a Non-Commutative Phase Space; UMCE: Santiago, Chile, 2023; in preparation. [Google Scholar]
- Rothe, K.D.; Scholtz, F.G. On the Hamilton–Jacobi equation for second-class constrained systems. Ann. Phys. 2003, 308, 639–651. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M. A review of the generalized uncertainty principle. Rep. Prog. Phys. 2015, 78, 126001. [Google Scholar] [CrossRef] [PubMed]
- Bruneton, J.P.; Larena, J. Quantum theory of the generalised uncertainty principle. Gen. Relativ. Gravit. 2017, 49, 56. [Google Scholar] [CrossRef]
- Pedram, P. A class of GUP solutions in deformed quantum mechanics. Int. J. Mod. Phys. D 2010, 19, 2003–2009. [Google Scholar] [CrossRef]
- Seifi, M.; Sefiedgar, A.S. The effects of the covariant generalized uncertainty principle on quantum mechanics. Can. J. Phys. 2022, 101, 242–247. [Google Scholar] [CrossRef]
- Luciano, G.G.; Petruzziello, L. Generalized uncertainty principle and its implications on geometric phases in quantum mechanics. Eur. Phys. J. Plus 2021, 136, 179. [Google Scholar] [CrossRef]
- Scardigli, F. The deformation parameter of the generalized uncertainty principle. J. Phys. Conf. Ser. 2019, 1275, 012004. [Google Scholar] [CrossRef]
- Casadio, R.; Scardigli, F. Generalized Uncertainty Principle, Classical Mechanics, and General Relativity. Phys. Lett. B 2020, 807, 135558. [Google Scholar] [CrossRef]
- Reginatto, M.; Hall, M.J.W. Entangling quantum fields via a classical gravitational interaction. J. Phys. Conf. Ser. 2019, 1275, 012039. [Google Scholar] [CrossRef]
- Övgün, A. Entangled Particles Tunneling From a Schwarzschild Black Hole immersed in an Electromagnetic Universe with GUP. Int. J. Theor. Phys. 2016, 55, 2919–2927. [Google Scholar] [CrossRef]
- Park, D. Quantum entanglement with generalized uncertainty principle. Nucl. Phys. B 2022, 977, 115736. [Google Scholar] [CrossRef]
- Guo, X.; Wang, P.; Yang, H. The classical limit of minimal length uncertainty relation: Revisit with the Hamilton-Jacobi method. J. Cosmol. Astropart. Phys. 2016, 2016, 62. [Google Scholar] [CrossRef]
- Reginatto, M. Exact Uncertainty Principle and Quantization: Implications for the Gravitational Field. Braz. J. Phys. 2005, 35, 476–480. [Google Scholar] [CrossRef]
- Dehaghani, N.B.; Pereira, F.L. Optimal Control of Quantum Systems by Pontryagin Maximum Principle. U.Porto J. Eng. 2022, 8, 194–201. [Google Scholar] [CrossRef]
- D’Alessandro, D.; Dahleh, M. Optimal control of two-level quantum systems. In Proceedings of the 2000 American Control Conference, ACC (IEEE Cat. No.00CH36334), Chicago, IL, USA, 28–30 June 2000; Volume 6, pp. 3893–3897. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras González, M.; Villena, M.; Ortiz Herrera, R. An Optimal Control Perspective on Classical and Quantum Physical Systems. Symmetry 2023, 15, 2033. https://doi.org/10.3390/sym15112033
Contreras González M, Villena M, Ortiz Herrera R. An Optimal Control Perspective on Classical and Quantum Physical Systems. Symmetry. 2023; 15(11):2033. https://doi.org/10.3390/sym15112033
Chicago/Turabian StyleContreras González, Mauricio, Marcelo Villena, and Roberto Ortiz Herrera. 2023. "An Optimal Control Perspective on Classical and Quantum Physical Systems" Symmetry 15, no. 11: 2033. https://doi.org/10.3390/sym15112033
APA StyleContreras González, M., Villena, M., & Ortiz Herrera, R. (2023). An Optimal Control Perspective on Classical and Quantum Physical Systems. Symmetry, 15(11), 2033. https://doi.org/10.3390/sym15112033