Assessment of Stochastic Numerical Schemes for Stochastic Differential Equations with “White Noise” Using Itô’s Integral
Abstract
:1. Introduction
2. Brownian Motion, White Noise
3. A Brief Presentation of Stochastic Differential Equations
- In the Itô sense:
- In the Stratonovich sense:
4. Finite Difference Schemes in Solving SDEs
- Improved three-stage Runge–Kutta scheme [13] (Saito and Mitsui):
5. Convergence Analysis
- A method is said to have a strong order of convergence equal to if there exist the positive constant such that:
- A method is said to have a weak order of convergence equal to if there exist the positive constant and an arbitrary smooth test function such that:
6. Numerical Application
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
function [XRKE, RKE_err,WRKE_err,XRKEFull,str] = ERK(R,dW,nrTEST)
%R = [1; 16; 32; 64; 128]; % stepsizes are R*dt
global dt Dt T N M randomNumber Xzero Xtrue
str='Efficient Runge Kutta(ERK) Method'
disp('Efficient Runge Kutta(ERK) Method')
Xerr = zeros(M,size(R,1)); %. preallocate array of errors of each step time
XRKEFull = zeros(size(R,1),N);
for p = 1:size(R,1) % 5 different stepsizes
Dt = R(p)*dt;
L = N/R(p); % L Euler steps of size Dt = R*dt
Xtemp = Xzero*ones(M,1);
XRKE = zeros(1,L);
for j = 1:L
Wien = sum(dW(:,R(p)*(j-1)+1:R(p)*j),2); % sum of each row
F1=f(Xtemp,Dt*j,nrTEST);
G1=g(Xtemp,Dt*j,nrTEST);
F2=f(Xtemp+F1*Dt+G1.*Wien,Dt*j,nrTEST);
G2=g(Xtemp-2/3*G1.*(Wien+sqrt(3*Dt)),Dt*j,nrTEST);
G3=g(Xtemp+2/9*G1.*(3*Wien+sqrt(3*Dt)),Dt*j,nrTEST);
G4=g(Xtemp-20/27*F1*Dt+10/27*(G2-G1).*Wien-10/27*G2*sqrt(3*Dt),Dt*j,nrTEST);
Xtemp =
Xtemp+(F1+F2)*Dt/2+1/40*(37*G1+30*G3-27*G4).*Wien+1/16*(8*G1+G2-9*G3)*sqrt(3*Dt);
XRKE(j) = Xtemp(randomNumber);
end
timeVector = Dt:Dt:T;
Xerr_RKEfinal(:,p) = abs(Xtemp- Xtrue(:,end)); % store the error at t = 1
XRKEFull(p,1:size(timeVector,2))=XRKE;
RKE_err(:,p) = abs(Xtemp-Xtrue(:,end));
WRKE_err(p)=sum(Xtemp)/M;
end
end
References
- Gard, T.C. Introduction to Stochastic Differential Equations; Marcel Dekker: New York, NY, USA, 1988. [Google Scholar]
- Toral, P.R. Colet: Stochastic Numerical Methods; Wiley VCH: Weinheim, Germany, 2014. [Google Scholar]
- Sagirow, P. Stochastic methods in the dynamics of satellites. In International Centre for Mechanical Sciences—Courses and Lectures; Springer: Viena, Austria, 1970; Volume 57. [Google Scholar]
- Kloeden, P.E.; Platen, E. Numerical Solutions of Stochastic Differential Equations; Springer-Verlag: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Higham, D.J. Modeling and Simulating Chemical Reactions. SIAM Rev. 2008, 50, 347–368. [Google Scholar] [CrossRef]
- Higham, D.J. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Rev. 2001, 43, 525–546. [Google Scholar] [CrossRef]
- Scalone, C. A Numerical Scheme for Harmonic Stochastic Oscillators Based on Asymptotic Expansions. Mathematics 2022, 10, 3083. [Google Scholar] [CrossRef]
- Lingala, N.; Namachchivaya, N.; Pavlyukevich, I. Random perturbations of a periodically driven nonlinear oscillator: Escape from a resonance zon. Nonlinearity 2017, 30, 1376–1404. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Scalone, C. On the numerical structure preservation of nonlinear damped stochastic oscillators. Numer. Algorithms 2021, 86, 933–952. [Google Scholar] [CrossRef]
- Evans, L.C. An Introduction to Stochastic Differential Equations; Berkeley University, Department of Mathematics: Berkeley, CA, USA, 2012. [Google Scholar]
- Slesar, V.C. Curs de Probabilități și Statistică Matematică; Facultatea de Inginerie Aerospațială, UPB: Bucharest, Romania, 2022. [Google Scholar]
- Mackevičius, V. Introduction to Stochastic Analysis. In Integrals and Differential Equation; ISTE: London, UK, 2011. [Google Scholar]
- Itô, K. Stochastic integral. Proc. Imp. Acad. 1944, 20, 519–524. [Google Scholar] [CrossRef]
- Rößler, A. Second Order Runge–Kutta Methods for Itô Stochastic Differential Equations. Soc. Ind. Appl. Math. J. 2009, 47, 1713–1738. [Google Scholar] [CrossRef]
- Hussain, S. Numerical Solutions of Stochastic Differential Equations by using Heun’s method. Acad. J. Nawroz Univ. 2018, 7, 208–215. [Google Scholar] [CrossRef]
- Saito, Y.; Mitsui, S. Stability Analysis of Numerical Schemes for Stochastic Differential Equations. SIAM J. on Appl. Math. 1996, 33, 2254–2267. [Google Scholar] [CrossRef]
- Newton, N.J. Asymptotically Efficient Runge-Kutta Methods for a Class of Ito and Stratonovich Equations. SIAM J. on Appl. Math 1991, 51, 542–567. [Google Scholar] [CrossRef]
- Ieregi, X.O. Weak Integration of Stochastic Differential Equations; University of Bergen: Bergen, Norway, 2022. [Google Scholar]
- Melbø, H.S.; Higham, D.J. Numerical simulation of a linear stochastic oscillator with additive noise. Appl. Numer. Math. 2004, 51, 89–99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogoi, A.; Dan, C.-I.; Strătilă, S.; Cican, G.; Crunteanu, D.-E. Assessment of Stochastic Numerical Schemes for Stochastic Differential Equations with “White Noise” Using Itô’s Integral. Symmetry 2023, 15, 2038. https://doi.org/10.3390/sym15112038
Bogoi A, Dan C-I, Strătilă S, Cican G, Crunteanu D-E. Assessment of Stochastic Numerical Schemes for Stochastic Differential Equations with “White Noise” Using Itô’s Integral. Symmetry. 2023; 15(11):2038. https://doi.org/10.3390/sym15112038
Chicago/Turabian StyleBogoi, Alina, Cătălina-Ilinca Dan, Sergiu Strătilă, Grigore Cican, and Daniel-Eugeniu Crunteanu. 2023. "Assessment of Stochastic Numerical Schemes for Stochastic Differential Equations with “White Noise” Using Itô’s Integral" Symmetry 15, no. 11: 2038. https://doi.org/10.3390/sym15112038
APA StyleBogoi, A., Dan, C. -I., Strătilă, S., Cican, G., & Crunteanu, D. -E. (2023). Assessment of Stochastic Numerical Schemes for Stochastic Differential Equations with “White Noise” Using Itô’s Integral. Symmetry, 15(11), 2038. https://doi.org/10.3390/sym15112038