Transport Properties of Strongly Correlated Fermi Systems
Abstract
:1. Introduction
2. The Behavior of the Effective Mass
3. Longitudinal Magnetoresistance
4. Linear in Temperature Resistivity
5. -Linear Resistivity and Planckian Limit
6. The Optical Conductivity of Heavy Fermion Metals
6.1. Scaling Behavior of the Real Part of the Optical Conductivity
Violation of the Scaling Behavior
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, G.R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 2001, 73, 797. [Google Scholar] [CrossRef]
- Löhneysen, H.V.; Rosch, A.; Vojta, M.; Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 2007, 79, 1015. [Google Scholar] [CrossRef]
- Gegenwart, P.; Si, Q.; Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 2008, 4, 186. [Google Scholar] [CrossRef]
- Sachdev, S. Quantum magnetism and criticality. Nat. Phys. 2008, 4, 173. [Google Scholar] [CrossRef]
- Coleman, P.; Schofield, A.J. Quantum criticality. Nature 2005, 433, 226. [Google Scholar] [CrossRef]
- Kadowaki, K.; Woods, S.B. Universal relationship of the resistivity and specific heat in heavy-Fermion compounds. Solid State Commun. 1986, 58, 507. [Google Scholar] [CrossRef]
- Shaginyan, V.R.; Amusia, M.Y.; Msezane, A.Z.; Popov, K.G. Scaling behavior of heavy fermion metals. Phys. Rep. 2010, 492, 31. [Google Scholar] [CrossRef]
- Shaginyan, V.R. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields. Phys. At. Nucl. 2011, 74, 1107. [Google Scholar] [CrossRef]
- Amusia, M.Y.; Shaginyan, V.R. Strongly Correlated Fermi Systems: A New State of Matter; Springer Tracts in Modern Physics; Springer Nature: Cham, Switzerland, 2020; Volume 283. [Google Scholar]
- Shaginyan, V.R.; Msezane, A.Z.; Japaridze, G.S. Peculiar Physics of Heavy-Fermion Metals: Theory versus Experiment. Atoms 2022, 10, 67. [Google Scholar] [CrossRef]
- Coleman, P.; Pepin, C.; Si, Q.; Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 2001, 13, R723. [Google Scholar] [CrossRef]
- Coleman, P.; Pepin, C. What is the fate of the heavy electron at a quantum critical point? C. Phys. 2002, 312–313, 383. [Google Scholar] [CrossRef]
- Khodel, V.A. Two scenarios of the quantum critical point. JETP Lett. 2007, 86, 721. [Google Scholar] [CrossRef]
- Clark, J.W.; Khodel, V.A.; Zverev, M.V. Dissecting and testing collective and topological scenarios for quantum critical point. Int. J. Mod. Phys. B 2010, 24, 4901. [Google Scholar] [CrossRef]
- Khodel, V.A.; Shaginyan, V.R. Superfluidity in systems with fermion condensate. JETP Lett. 1990, 51, 553. [Google Scholar]
- Volovik, G.E. Quantum Phase Transitions from Topology in Momentum Space. Lect. Notes Phys. 2007, 718, 31. [Google Scholar]
- Volovik, G.E. A new class of normal Fermi liquids. JETP Lett. 1991, 53, 222. [Google Scholar]
- Volovik, G.E. Graphite, Graphene, and the Flat Band Superconductivity. JETP Lett. 2018, 107, 516. [Google Scholar] [CrossRef]
- Volovik, G.E. From standard model of particle physics to room-temperature superconductivity. Phys. Scr. 2015, 164, 014014. [Google Scholar] [CrossRef]
- Törmä, P.; Peotta, S.; Bernevig, B.A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 2022, 4, 528. [Google Scholar] [CrossRef]
- Regnault, N.; Xu, Y.; Li, M.-R.; Ma, D.S.; Jovanovic, M. Catalogue of flat-band stoichiometric materials. Nature 2022, 603, 824. [Google Scholar] [CrossRef]
- Khodel, V.A.; Clark, J.W.; Zverev, M.V. Topological disorder triggered by interaction-induced flattening of electron spectra in solids. Phys. Rev. B 2020, 102, 201108. [Google Scholar] [CrossRef]
- Khodel, V.A.; Shaginyan, V.R.; Khodel, V.V. New approach in the microscopic Fermi systems theory. Phys. Rep. 1994, 249, 1. [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Pitaevskii, L. Statistical Physics. Part 2; Butterworth-Heinemann: Oxford, UK, 2002. [Google Scholar]
- Pines, D.; Noziéres, P. Theory of Quantum Liquids; Benjamin: New York, NY, USA, 1966. [Google Scholar]
- Abrikosov, A.A.; Gor’kov, L.P.; Dzyaloshinski, I.E. Methods of Quantum Field Theory in Statistical Physics; Prentice-Hall: London, UK, 1963. [Google Scholar]
- Paglione, J.; Tanatar, M.A.; Hawthorn, D.G.; Boaknin, E.; Hill, R.W.; Ronning, F.; Sutherland, M.; Taillefer, L.; Petrovic, C.; Canfield, P.C. Field-Induced Quantum Critical Point in CeCoIn5. Phys. Rev. Lett. 2003, 91, 246405. [Google Scholar] [CrossRef] [PubMed]
- Donath, J.G.; Steglich, F.; Bauer, E.D.; Sarrao, J.L.; Gegenwart, P. Dimensional Crossover of Quantum Critical Behavior in CeCoIn 5. Phys. Rev. Lett. 2008, 2008, 136401. [Google Scholar] [CrossRef] [PubMed]
- Gegenwart, P.; Westerkamp, T.; Krellner, C.; Brando, M.; Tokiwa, Y.; Geibel, C.; Steglich, F. Unconventional quantum criticality in YbRh2Si2. Phys. B 2008, 403, 1184. [Google Scholar] [CrossRef]
- Bruin, J.A.N.; Sakai, H.; Perry, R.S.; Mackenzie, A.P. Similarity of Scattering Rates in Metals Showing T-Linear Resistivity. Science 2013, 339, 880. [Google Scholar] [CrossRef]
- Legros, A.; Benhabib, S.; Tabis, W.; Laliberté, F.; Dion, M.; Lizaire, M.; Vignolle, B.; Vignolles, D.; Raffy, H.; Li, Z.Z.; et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 2019, 15, 142. [Google Scholar] [CrossRef]
- Homes, C.C.; Tu, J.J.; Li, J.; Gu, G.D.; Akrap, A. Optical conductivity of nodal metals. Sci. Rep. 2013, 3, 3446. [Google Scholar] [CrossRef]
- Li, X.; Kono, J.; Si, Q.; Paschen, S. Is the optical conductivity of heavy fermion strange metals Planckian? Front. Electron. Mater. 2022, 2, 934691. [Google Scholar] [CrossRef]
- Shaginyan, V.R. Density functional theory of fermion condensation. Phys. Lett. A 1998, 249, 237. [Google Scholar] [CrossRef]
- Varma, C.M. Linear in temperature resistivity and associated mysteries including high temperature superconductivity. Rev. Mod. Phys. 2020, 92, 031001. [Google Scholar] [CrossRef]
- Clark, J.W.; Khodel, V.A.; Zverev, M.V. Anomalous low-temperature behavior of strongly correlated Fermi systems. Phys. Rev. B 2005, 71, 012401. [Google Scholar] [CrossRef]
- Hartmann, S.; Oeschler, N.; Krellner, C.; Geibel, C.; Steglich, F. Violation of critical universality at the antiferromagnetic phase transition of YbRh2Si2. Phys. B 2008, 403, 1254. [Google Scholar]
- Takahashi, D.; Abe, S.; Mizuno, H.; Tayurskii, D.A.; Matsumoto, K.; Suzuki, H.; Õnuki, Y. ac susceptibility and static magnetization measurements of CeRu2Si2 at small magnetic fields and ultralow temperatures. Phys. Rev. B 2003, 67, 180407. [Google Scholar] [CrossRef]
- Shaginyan, V.R.; Msezane, A.Z.; Popov, K.G.; Stephanovich, V.A. Strongly Correlated Fermi-Systems: Magnetic-Field-Induced Reentrance of Fermi-Liquid Behavior and Spin-Lattice Relaxation Rates in YbCu5-xAux. Phys. Lett. A 2009, 373, 3783. [Google Scholar] [CrossRef]
- Shaginyan, V.R.; Msezane, A.Z.; Artamonov, S.A. Magnetic field as an important tool in exploring the strongly correlated Fermi systems and their particle-Hole and time reversal asymmetries. Magnetism 2023, 3, 180–203. [Google Scholar] [CrossRef]
- Carretta, P.; Pasero, R.; Giovannini, M.; Baines, C. Magnetic-field-induced crossover from non-Fermi to Fermi liquid at the quantum critical point of YbCu5xAux. Phys. Rev. B 2009, 79, 020401. [Google Scholar] [CrossRef]
- Shaginyan, V.R.; Msezane, A.Z.; Popov, K.G.; Clark, J.W.; Zverev, M.V.; Khodel, V.A. Magnetic field dependence of the residual resistivity of the heavy-fermion metal CeCoIn5. Phys. Rev. B 2012, 86, 085147. [Google Scholar] [CrossRef]
- Nozières, P. Properties of Fermi liquids with a finite range interaction. J. Phys. I France 1992, 2, 443. [Google Scholar] [CrossRef]
- Oeschler, N.; Gegenwart, P.; Lang, M.; Movshovich, R.; Sarrao, J.L.; Thompson, J.D.; Steglich, F. Uniaxial Pressure Effects on CeIrIn5 and CeCoIn5 Studied by Low-Temperature Thermal Expansion. Phys. Rev. Lett. 2003, 91, 076402. [Google Scholar] [CrossRef]
- Ronning, F.; Capan, C.; Bauer, E.D.; Thompson, J.D.; Sarrao, J.L.; Movshovich, R. Pressure study of quantum criticality in CeCoIn5. Phys. Rev. B 2006, 73, 064519. [Google Scholar] [CrossRef]
- Bianchi, A.; Movshovich, R.; Oeschler, N.; Gegenwart, P.; Steglich, F.; Thompson, J.D.; Pagliuso, P.G.; Sarrao, J.L. First-Order Superconducting Phase Transition in CeCoIn5. Phys. Rev. Lett. 2002, 89, 137002. [Google Scholar] [CrossRef] [PubMed]
- Aynajian, P.; Neto, E.; Gyenis, A.; Baumbach, R.E.; Thompson, J.D. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 2012, 486, 201. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Y.; Xu, D.F.; Niu, X.H.; Jiang, J.; Peng, R. Direct observation of how the heavy-fermion state develops in CeCoIn5. Phys. Rev. B 2017, 96, 045107. [Google Scholar] [CrossRef]
- Cao, V.; Fatemi, S.; Fang, K.; Watanabe, K. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43. [Google Scholar] [CrossRef]
- Shaginyan, V.R.; Popov, K.G.; Khodel, V.A. Quasiclassical physics and T-linear resistivity in both strongly correlated and ordinary metals. Phys. Rev. B 2013, 88, 115103. [Google Scholar] [CrossRef]
- Khodel, V.A.; Clark, J.W.; Shaginyan, V.R.; Zverev, M.V. Second wind of the Dulong-Petit Law at a quantum critical point. JETP Lett. 2010, 92, 532. [Google Scholar] [CrossRef]
- Patel, A.A.; Sachdev, S. Theory of a Planckian Metal. Phys. Rev. Lett. 2019, 123, 066601. [Google Scholar] [CrossRef]
- Volovik, G.E. Flat Band and Planckian Metal. JETP Lett. 2019, 110, 352. [Google Scholar] [CrossRef]
- Prochaska, L.; Li, X.; MacFarland, D.C.; Andrews, A.M.; Bonta, M.; Bianco, E.F.; Yazdi, S.; Schrenk, W.; Detz, H.; Limbeck, A.; et al. Singular charge fluctuations at a magnetic quantum critical point. Science 2020, 367, 285. [Google Scholar] [CrossRef]
- Michon, B.; Berthod, C.; Rischau, C.W.; Ataei, A.; Chen, L.; Komiya, S.; Ono, S.; Taillefer, L.; van der Marel, D.; Georges, A. Reconciling scaling of the optical conductivity of cuprate superconductors with Planckian resistivity and specific heat. Nat. Commun. 2023, 14, 3033. [Google Scholar] [CrossRef] [PubMed]
- Gurzhi, R.N. Mutual Electron Correlations in Metal Optics. Sov. Phys. JETP 1959, 8, 673. [Google Scholar]
- Götze, W.; Wölfle, P. Homogeneous Dynamical Conductivity of Simple Metals. Phys. Rev. 1972, 6, 1226. [Google Scholar] [CrossRef]
- Littlewood, P.B.; Varma, C.M. Phenomenology of the normal and superconducting states of a marginal Fermi liquid. J. Appl. Phys. 1991, 69, 4979. [Google Scholar] [CrossRef]
- Shaginyan, V.R.; Stephanovich, V.A.; Msezane, A.Z.; Schuck, P.; Clark, J.W.; Amusia, M.Y.; Japaridze, G.S.; Popov, K.G.; Kirichenko, E.V. New State of Matter: Heavy Fermion Systems, Quantum Spin Liquids, Quasicrystals, Cold Gases, and High-Temperature Superconductors. J. Low Temp. Phys. 2017, 189, 410. [Google Scholar] [CrossRef]
- Pfau, H.; Hartmann, S.; Stockert, U.; Sun, P.; Lausberg, S.; Brando, M.; Friedemann, S.; Krellner, C.; Geibel, C.; Wirth, S.; et al. Thermal and electrical transport across a magnetic quantum critical point. Nature 2012, 484, 493. [Google Scholar] [CrossRef]
- Gegenwart, P.; Custers, J.; Geibel, C.; Neumaier, K.; Tayama, T.; Tenya, K.; Trovarelli, O.; Steglich, F. Magnetic-Field Induced Quantum Critical Point in YbRh2Si2. Phys. Rev. Lett. 2002, 89, 056402. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaginyan, V.R.; Msezane, A.Z.; Zverev, M.V. Transport Properties of Strongly Correlated Fermi Systems. Symmetry 2023, 15, 2055. https://doi.org/10.3390/sym15112055
Shaginyan VR, Msezane AZ, Zverev MV. Transport Properties of Strongly Correlated Fermi Systems. Symmetry. 2023; 15(11):2055. https://doi.org/10.3390/sym15112055
Chicago/Turabian StyleShaginyan, Vasily R., Alfred Z. Msezane, and Mikhail V. Zverev. 2023. "Transport Properties of Strongly Correlated Fermi Systems" Symmetry 15, no. 11: 2055. https://doi.org/10.3390/sym15112055
APA StyleShaginyan, V. R., Msezane, A. Z., & Zverev, M. V. (2023). Transport Properties of Strongly Correlated Fermi Systems. Symmetry, 15(11), 2055. https://doi.org/10.3390/sym15112055