Moment of Inertia and Dynamical Symmetry
Abstract
:1. Introduction
2. Rigid Body: Quadrupole Moment and Moment of Inertia
2.1. Quadrupole Moment
2.2. Moment of Inertia
2.3. Relation of the Two Moments
2.4. Shell Connection
2.5. Energy
3. Classical Ellipsoid versus C
- (i)
- Second-order Casimir of SU(3) ();
- (ii)
- ();
- (iii)
- (), where n is the linear Casimir of U(3);
- (iv)
- ().
4. Energy Spectra
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Eisenberg, J.M.; Greiner, W. Nuclear Theory I: Nuclear Models, 3rd ed.; North-Holland: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Wong, S.S.M. Introductory Nuclear Physics; Wiley Verlag: Weinheim, Germany, 1998. [Google Scholar]
- Nilsson, S.G.; Ragnarsson, I. Shapes and Shells in Nuclear Structure; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Williams, W.S.C. Nuclear and Particle Physics; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Draayer, J.P. Algebraic Approaches to Nuclear Structure: Interacting Boson and Fermion Models; Casten, R.F., Ed.; Harwood Academic Publishers: Singapore, 1993; p. 423. [Google Scholar]
- Elliott, J.P. Collective Motion in the Nuclear Shell Model. I. Classification Schemes for States of Mixed Configurations. Proc. R. Soc. A 1958, 245, 128–145. [Google Scholar] [CrossRef]
- Elliott, J.P. Collective Motion in the Nuclear Shell Model. II. The Introduction of Intrinsic Wave-Functions. Proc. R. Soc. A 1958, 245, 562–581. [Google Scholar] [CrossRef]
- Elliott, J.P. Selected Topics in Nuclear Theory; Janouch, F., Ed.; IAEA: Vienna, Austria, 1963; p. 157. [Google Scholar]
- Harvey, M. Advances in Nuclear Physics: The Nuclear SU3 Model; Baranger, M., Vogt, E., Eds.; Plenum Press: New York, NY, USA, 1968; Volume 1, pp. 67–180. [Google Scholar]
- Lipkin, H.J. Lie Groups for Pedestrians; North-Holland Publication Co.: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Rosensteel, G.; Rowe, D.J. Nuclear Sp(3, R) Model. Phys. Rev. Lett. 1977, 38, 10–14. [Google Scholar] [CrossRef]
- Rosensteel, G.; Rowe, D.J. On the algebraic formulation of collective models III. The symplectic shell model of collective motion. Ann. Phys. 1980, 126, 343–370. [Google Scholar] [CrossRef]
- Rowe, D.J.; Rosensteel, G. Rotational bands in the u(3)-boson model. Phys. Rev. C 1982, 25, 3236–3238. [Google Scholar] [CrossRef]
- Castanos, O.; Draayer, J.P. Contracted symplectic model with ds-shell applications. Nucl. Phys. A 1989, 491, 349–372. [Google Scholar] [CrossRef]
- Cseh, J. Some new chapters of the long history of SU(3). EPJ Web Conf. 2018, 194, 05001. [Google Scholar] [CrossRef]
- Cseh, J. Microscopic structure and mathematical background of the multiconfigurational dynamical symmetry. Phys. Rev. C 2021, 103, 064322. [Google Scholar] [CrossRef]
- Cseh, J.; Riczu, G.; Darai, J. A symmetry in-between the shapes, shells, and clusters of nuclei. Symmetry 2023, 15, 115. [Google Scholar] [CrossRef]
- Cseh, J. On the Logical Structure of Composite Symmetries in Atomic Nuclei. Symmetry 2023, 15, 371. [Google Scholar] [CrossRef]
- Iachello, F. Lie Algebras and Applications; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Elliott, J.P.; Dawber, P.G. Symmetry in Physics; MacMillen Press: Chippenham, UK, 1986. [Google Scholar]
- Wybourne, B.G. Classical Groups for Physicists; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Zhang, Z.H.; Huang, M.; Afanasjev, A.V. Rotational excitations in rare-earth nuclei: A comparative study within three cranking models with different mean fields and treatments of pairing correlations. Phys. Rev. C 2020, 101, 054303. [Google Scholar] [CrossRef]
- Kondratyev, V.N. R-Process with Magnetized Nuclei at Dynamo-Explosive Supernovae and Neutron Star Mergers. Universe 2021, 7, 487. [Google Scholar] [CrossRef]
- Rowe, D.J.; Wood, J.L. Fundamentals of Nuclear Models; World Scientific: Singapore, 2010; p. 98. [Google Scholar]
- Brink, D.M.; Satchler, G.R. Angular Momentum; Oxford University Press: Oxford, UK, 1962; p. 51. [Google Scholar]
- Goldstein, H. Classical Mechanics; Addison Wesley: Amsterdam, The Netherlands, 1974; p. 165. [Google Scholar]
- Budó, Á. Mechanika; Tankönyvkiadó, Negyedik kiadás: Budapest, Hungary, 1965; p. 216. [Google Scholar]
- Bohr, A.; Mottelson, B.R. Nuclear Structure: Nuclear Deformations; W.A. Benjamin: New York, NY, USA, 1975; Volume II. [Google Scholar]
- Fayache, M.S.; Sharon, Y.Y.; Zamick, L. Single-particle energies and Elliott’s SU(3) model. Phys. Rev. C 1997, 55, 1575–1576. [Google Scholar] [CrossRef]
- Moya de Guerra, E.; Sarriguren, P.; Zamick, L. Analytic expressions for the single particle energies with a quadrupole-quadrupole interaction and the relation to Elliott’s SU(3) model. Phys. Rev. C 1997, 56, 863–867. [Google Scholar] [CrossRef]
- Cseh, J. Algebraic models for shell-like quarteting of nucleons. Phys. Lett. B 2015, 743, 213–217. [Google Scholar] [CrossRef]
- Cseh, J.; Riczu, G. Quartet excitations and cluster spectra in light nuclei. Phys. Lett. B 2016, 757, 312–316. [Google Scholar] [CrossRef]
- Riczu, G.; Cseh, J. A unified description of spectra of different configurations, deformation and energy regions. Bulg. J. Phys. 2021, 48, 524–534. [Google Scholar] [CrossRef]
- Riczu, G.; Cseh, J. Gross features of the spectrum of the 36Ar nucleus. Int. J. Mod. Phys. E 2021, 30, 2150034. [Google Scholar] [CrossRef]
- Akiyama, Y.; Draayer, J.P. A user’s guide to Fortran programs for Wigner and Racah coefficients of SU3. Comput. Phys. Commun. 1973, 5, 405–415. [Google Scholar] [CrossRef]
Nucleus | Band | L → L | B(E2)(W.u.) | B(E2)(W.u.) |
---|---|---|---|---|
Ne | 0 | 2 → 0 | 20.3 | 20.3 |
4 → 2 | 22 | 25.7 | ||
6 → 4 | 20 | 21.8 | ||
8 → 6 | 9 | 12.9 | ||
0 | 3 → 1 | 50 | 30.8 | |
Si | GB | 2 → 0 | 13.2 | 13.2 |
4 → 2 | 16.4 | 17.8 | ||
6 → 4 | 10.6 | 17.5 | ||
0 | 2 → 0 | 5.0 | 8.2 | |
(12,0)0 | 4 → 2 | 30.4 | 17.8 | |
6 → 4 | 37 | 17.5 | ||
O+P3 | 4 → 3 | 0.91 | 24.7 | |
Ar | GB | 2 → 0 | 8.2 | 8.2 |
4 → 2 | 12 | 10.4 | ||
2 | 3 → 2 | 0.29 | 6.8 | |
3 | 4 → 3 | 0.35 | 15.6 | |
SD | 4 → 2 | 53 | 60.9 | |
6 → 4 | 64 | 65.6 | ||
8 → 6 | 62 | 66.5 | ||
10 → 8 | 45 | 65.6 | ||
12 → 10 | 39 | 63.5 | ||
14 → 12 | 33 | 60.3 | ||
16 → 14 | 18 | 55.9 | ||
Ti | GB | 2 → 0 | 13 | 13.0 |
4 → 2 | 10 | 17.5 | ||
0 | 2 → 0 | 23 | 7.8 | |
4 → 2 | 21 | 10.5 |
Nucleus | a | b | d | F | |||
---|---|---|---|---|---|---|---|
6.66030 | −0.14261 | 0.00000 | 0.94185 | 1.13874 | |||
Ne | 1.153 | 0.028457 | 6.152410 | −0.090513 | −0.000971 | 1 | 0.70997 |
1.398849 + 0.013758 | 6.403456 | −0.108297 | −0.000973 | 1 | 0.66174 | ||
5.51017 | −0.07859 | 0.00062 | 1.44233 | 0.82616 | |||
Si | 0.366 | 0.013176 | 6.168610 | −0.074770 | 0.000526 | 1 | 1.00443 |
1.461578 + 0.005352 | 6.447891 | −0.081092 | 0.000530 | 1 | 0.98845 | ||
6.52745 | −0.06131 | 0.00032 | 1.29616 | 0.92377 | |||
Ar | 0.466 | 0.020933 | 3.497172 | −0.028190 | 0.000250 | 1 | 0.38433 |
1.401125 + 0.008935 | 3.036900 | −0.028339 | 0.000288 | 1 | 0.21183 | ||
5.90654 | −0.07512 | 0.00104 | 1.23395 | 1.37327 | |||
Ti | 0.361 | 0.030113 | 6.133733 | −0.084859 | 0.001472 | 1 | 1.45992 |
5.672361 + 0.005232 | 5.865533 | −0.073725 | 0.001044 | 1 | 1.32555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cseh, J.; Riczu, G. Moment of Inertia and Dynamical Symmetry. Symmetry 2023, 15, 2116. https://doi.org/10.3390/sym15122116
Cseh J, Riczu G. Moment of Inertia and Dynamical Symmetry. Symmetry. 2023; 15(12):2116. https://doi.org/10.3390/sym15122116
Chicago/Turabian StyleCseh, József, and Gábor Riczu. 2023. "Moment of Inertia and Dynamical Symmetry" Symmetry 15, no. 12: 2116. https://doi.org/10.3390/sym15122116
APA StyleCseh, J., & Riczu, G. (2023). Moment of Inertia and Dynamical Symmetry. Symmetry, 15(12), 2116. https://doi.org/10.3390/sym15122116