Symmetrical and Asymmetrical Distributions in Statistics and Data Science
Conflicts of Interest
References
- Hu, X.; Zhang, S.; Sun, G.; Zhong, J.; Wu, S. Modified One-Sided EWMA Charts without- and with Variable Sampling Intervals for Monitoring a Normal Process. Symmetry 2022, 14, 159. [Google Scholar] [CrossRef]
- Shih, J.-H.; Konno, Y.; Chang, Y.-T.; Emura, T. Copula-Based Estimation Methods for a Common Mean Vector for Bivariate Meta-Analyses. Symmetry 2022, 14, 186. [Google Scholar] [CrossRef]
- Alyami, S.A.; Babu, M.G.; Elbatal, I.; Alotaibi, N.; Elgarhy, M. Type II Half-Logistic Odd Fréchet Class of Distributions: Statistical Theory and Applications. Symmetry 2022, 14, 1222. [Google Scholar] [CrossRef]
- Hu, X.; Sun, G.; Xie, F.; Tang, A. Monitoring the Ratio of Two Normal Variables Based on Triple Exponentially Weighted Moving Average Control Charts with Fixed and Variable Sampling Intervals. Symmetry 2022, 14, 1236. [Google Scholar] [CrossRef]
- Haj Ahmad, H.; Almetwally, E.M. Generating Optimal Discrete Analogue of the Generalized Pareto Distribution under Bayesian Inference with Applications. Symmetry 2022, 14, 1457. [Google Scholar] [CrossRef]
- Harke, F.H.; Merk, M.S.; Otto, P. Estimation of Asymmetric Spatial Autoregressive Dependence on Irregular Lattices. Symmetry 2022, 14, 1474. [Google Scholar] [CrossRef]
- Khan, I.E.; Paramasivam, R. Reduction in Waiting Time in an M/M/1/N Encouraged Arrival Queue with Feedback, Balking and Maintaining of Reneged Customers. Symmetry 2022, 14, 1743. [Google Scholar] [CrossRef]
- Haj Ahmad, H.; Almetwally, E.M.; Rabaiah, A.; Ramadan, D.A. Statistical Analysis of Alpha Power Inverse Weibull Distribution under Hybrid Censored Scheme with Applications to Ball Bearings Technology and Biomedical Data. Symmetry 2023, 15, 161. [Google Scholar] [CrossRef]
- Alotaibi, R.; Rezk, H.; Elshahhat, A. Computational Analysis for Fréchet Parameters of Life from Generalized Type-II Progressive Hybrid Censored Data with Applications in Physics and Engineering. Symmetry 2023, 15, 348. [Google Scholar] [CrossRef]
- Arslan, M.; Anwar, S.; Gunaime, N.M.; Shahab, S.; Lone, S.A.; Rasheed, Z. An Improved Charting Scheme to Monitor the Process Mean Using Two Supplementary Variables. Symmetry 2023, 15, 482. [Google Scholar] [CrossRef]
- Rehman, H.; Chandra, N.; Emura, T.; Pandey, M. Estimation of the Modified Weibull Additive Hazards Regression Model under Competing Risks. Symmetry 2023, 15, 485. [Google Scholar] [CrossRef]
- Haj Ahmad, H.; Ramadan, D.A.; Mansour, M.M.M.; Aboshady, M.S. The Reliability of Stored Water behind Dams Using the Multi-Component Stress-Strength System. Symmetry 2023, 15, 766. [Google Scholar] [CrossRef]
- Alotaibi, R.; Almetwally, E.M.; Rezk, H. Reliability Analysis of Kavya Manoharan Kumaraswamy Distribution under Generalized Progressive Hybrid Data. Symmetry 2023, 15, 1671. [Google Scholar] [CrossRef]
- Chukhrova, N.; Johannssen, A. Monitoring of high-yield and periodical processes in health care. Health Care Manag. Sci. 2020, 23, 619–639. [Google Scholar] [CrossRef] [PubMed]
- Johannssen, A.; Chukhrova, N.; Celano, G.; Castagliola, P. A number-between-events control chart for monitoring finite horizon production processes. Qual. Reliab. Eng. Int. 2022, 38, 2110–2138. [Google Scholar] [CrossRef]
- Johannssen, A.; Chukhrova, N.; Castagliola, P. Efficient algorithms for calculating the probability distribution of the sum of hypergeometric-distributed random variables. MethodsX 2021, 8, 101507. [Google Scholar] [CrossRef] [PubMed]
- Chukhrova, N.; Johannssen, A. Randomized vs. non-randomized hypergeometric hypothesis testing with crisp and fuzzy hypotheses. Stat. Pap. 2020, 61, 2605–2641. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johannssen, A.; Chukhrova, N.; Zhu, Q. Symmetrical and Asymmetrical Distributions in Statistics and Data Science. Symmetry 2023, 15, 2140. https://doi.org/10.3390/sym15122140
Johannssen A, Chukhrova N, Zhu Q. Symmetrical and Asymmetrical Distributions in Statistics and Data Science. Symmetry. 2023; 15(12):2140. https://doi.org/10.3390/sym15122140
Chicago/Turabian StyleJohannssen, Arne, Nataliya Chukhrova, and Quanxin Zhu. 2023. "Symmetrical and Asymmetrical Distributions in Statistics and Data Science" Symmetry 15, no. 12: 2140. https://doi.org/10.3390/sym15122140
APA StyleJohannssen, A., Chukhrova, N., & Zhu, Q. (2023). Symmetrical and Asymmetrical Distributions in Statistics and Data Science. Symmetry, 15(12), 2140. https://doi.org/10.3390/sym15122140