The Importance of Being Asymmetric for Geophysical Vortices
Abstract
:1. Introduction
2. Quasigeostrophic Model and Integral Invariants
3. Spatial Symmetries
4. Steady Propagating Structures
4.1. Evanescent and Wavy Modes
4.2. Nonradiating Vortex Structures
4.3. Radiating Vortex Structures
5. Discussion
Funding
Data Availability Statement
Acknowledgement
Conflicts of Interest
References
- Khain, A.P.; Sutyrin, G.G. Tropical Cyclones and Their Interaction with the Ocean 1983; Gidrometeoizdat: Saint Petersburg, Russia, 1983; 272p. (In Russian) [Google Scholar]
- McWilliams, J.C. Submesoscale, coherent vortices in the ocean. Rev. Geophys. 1985, 23, 165–182. [Google Scholar] [CrossRef]
- Flierl, G.R. Isolated eddy models in geophysics. Annu. Rev. Fluid Mech. 1987, 19, 493–530. [Google Scholar] [CrossRef]
- Korotaev, G.K. Theoretical Modelling of Synoptic Variability of the Ocean; Naukova Dumka: Kiev, Ukraine, 1988; 160p. (In Russian) [Google Scholar]
- Carton, X. Hydrodynamical Modeling of Oceanic Vortices. Surv. Geophys. 2001, 22, 179–263. [Google Scholar] [CrossRef]
- Sokolovskii, M.A.; Verron, J. Dynamics of Vortex Structures in a Stratified Rotating Fluid; Book Series: Atmospheric and Oceanographic Sciences Library; Springer: New York, NY, USA, 2014; Volume 47, 382p. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Ni, Q.; Zhai, X.; Wang, G.; Hughes, C.W. Widespread Mesoscale Dipoles in the Global Ocean. J. Geophys. Res. Oceans 2020, 125, e2020JC016479. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global heat and salt transports by eddy movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef]
- Thompson, A.F.; Young, W.R. Scaling Baroclinic Eddy Fluxes: Vortices and Energy Balance. J. Phys. Oceanogr. 2006, 36, 720–738. [Google Scholar] [CrossRef]
- Gallet, B.; Ferrari, R. A Quantitative Scaling Theory for Meridional Heat Transport in Planetary Atmospheres and Oceans. AGU Adv. 2021, 2, e2020AV000362. [Google Scholar] [CrossRef]
- Ryzhov, E.; Berloff, P. On transport tensor of dynamically unresolved oceanic mesoscale eddies. J. Fluid Mech. 2022, 939, A7. [Google Scholar] [CrossRef]
- Sutyrin, G.G.; Radko, T.; McWilliams, J.C. Contrasting eddy-driven transport in baroclinically unstable eastward currents and subtropical return flows. Phys. Fluids 2022, 34, 126605. [Google Scholar] [CrossRef]
- Stern, M.E. Minimal properties of planetary eddies. J. Mar. Res. 1975, 33, 1–13. [Google Scholar]
- Larichev, V.D.; Reznik, G.M. On two-dimensional solitary Rossby waves. Dokl. Akad. Nauk. 1976, 231, 1077–1079. [Google Scholar]
- Lamb, H. Hydrodynamics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1895. [Google Scholar]
- Meleshko, V.; van Heijst, G. On Chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid. J. Fluid Mech. 1994, 272, 157–182. [Google Scholar] [CrossRef]
- Kizner, Z.; Berson, D.; Reznik, G.; Sutyrin, G. The Theory of the Beta-Plane Baroclinic Topographic Modons. Geophys. Astrophys. Fluid Dyn. 2003, 97, 175–211. [Google Scholar] [CrossRef]
- Mikhailova, E.I.; Shapiro, N.B. Two-dimensional model of synoptic disturbances evolution in the ocean. Izv. Acad. Sci. USSR Phys. Almas. Okeana 1980, 16, 823. [Google Scholar]
- Petviashvili, V.I. The Jovian Red Spot and drift soliton in plasma. JETP Lett. 1980, 32, 632. [Google Scholar]
- Sutyrin, G.G. Theory of solitary anticyclones in a rotating liquid. Dokl. Akad. Nauk SSSR Earth Sci. 1985, 280, 38. [Google Scholar]
- Nezlin, M.V.; Sutyrin, G.G. Problems of simulation of large, long-lived vortices in the atmospheres of the giant planets (Jupiter, Saturn, Neptune). Surv. Geophys. 1994, 15, 63–99. [Google Scholar] [CrossRef]
- Sutyrin, G.G.; Yushina, I.G. Numerical modelling of the formation, evolution, interaction and decay of isolated vortices. In Mesoscale/Synoptic Coherent Structures in Geophysical, Turbulence; Nihoul, J.C.J., Jamart, B.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; Volume 50, pp. 721–736. [Google Scholar] [CrossRef]
- Sutyrin, G. How baroclinic vortices intensify resulting from erosion of their cores and/or changing environment. Ocean. Model. 2020, 156, 101711. [Google Scholar] [CrossRef]
- Flierl, G.R. Rossby Wave Radiation from a Strongly Nonlinear Warm Eddy. J. Phys. Oceanogr. 1984, 14, 47–58. [Google Scholar] [CrossRef]
- Korotaev, G. Radiating Vortices in Geophysical Fluid Dynamics. Surv. Geophys. 1997, 18, 567–618. [Google Scholar] [CrossRef]
- Nycander, J. Drift Velocity of Radiating Quasigeostrophic Vortices. J. Phys. Oceanogr. 2001, 31, 2178–2185. [Google Scholar] [CrossRef]
- Sutyrin, G.G. The beta-effect and the evolution of a localized vortex. Sov. Phys. Dokl. 1987, 32, 791–793. [Google Scholar]
- Kravtsov, S.; Reznik, G. Numerical solutions of the singular vortex problem. Phys. Fluids 2019, 31, 066602. [Google Scholar] [CrossRef]
- Gill, A.; Green, J.; Simmons, A. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep. Sea Res. Oceanogr. Abstr. 1974, 21, 499–528. [Google Scholar] [CrossRef]
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Ferrari, R.; Wunsch, C. Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks. Annu. Rev. Fluid Mech. 2009, 41, 253–282. [Google Scholar] [CrossRef]
- Venaille, A.; Vallis, G.K.; Smith, K.S. Baroclinic Turbulence in the Ocean: Analysis with Primitive Equation and Quasigeostrophic Simulations. J. Phys. Oceanogr. 2011, 41, 1605–1623. [Google Scholar] [CrossRef]
- Radko, T.; de Carvalho, D.P.; Flanagan, J. Nonlinear Equilibration of Baroclinic Instability: The Growth Rate Balance Model. J. Phys. Oceanogr. 2014, 44, 1919–1940. [Google Scholar] [CrossRef]
- Sutyrin, G.G.; Radko, T. Why the most long-lived eddies are found in the subtropical ocean westward flows. Ocean. Model. 2021, 161, 101782. [Google Scholar] [CrossRef]
- Sutyrin, G.G.; Radko, T.; Nycander, J. Steady radiating baroclinic vortices in vertically sheared flows. Phys. Fluids 2021, 33, 031705. [Google Scholar] [CrossRef]
- Sutyrin, G.; Radko, T.; McWilliams, J.C. Self-amplifying hetons in vertically sheared geostrophic turbulence. Phys. Fluids 2021, 33, 101705. [Google Scholar] [CrossRef]
- Pedlosky, J. Geophysical Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1987; Volume 710. [Google Scholar]
- Phillips, N.A. Energy transformations and meridional circulations associated with simple baroclinic waves in a two level, quasi-geostrophic model. Tellus 1954, 6, 273–286. [Google Scholar] [CrossRef]
- Reznik, G.M. On the structure and dynamics of a two-dimensional Rossby soliton. Acad. Sci. USSR Oceanol. 1987, 27, 536–539. [Google Scholar]
- Brion, V.; Sipp, D.; Jacquin, L. Linear dynamics of the Lamb-Chaplygin dipole in the two-dimensional limit. Phys. Fluids 2014, 26, 064103. [Google Scholar] [CrossRef]
- Davies, J.; Sutyrin, G.G.; Berloff, P. On the spontaneous symmetry breaking of eastward propagating dipoles. Phys. Fluids 2023, 35, 041707. [Google Scholar] [CrossRef]
- Davies, J.; Sutyrin, G.G.; Crowe, M.N.; Berloff, P.S. Deformation and destruction of north-eastward drifting dipoles. Phys. Fluids 2023, 35, 0171909. [Google Scholar] [CrossRef]
- Nycander, J.; Isichenko, M.B. Motion of dipole vortices in a weakly inhomogeneous medium and related convective transport. Phys. Fluids B Plasma Phys. 1990, 2, 2042–2047. [Google Scholar] [CrossRef]
- Nycander, J. Refutation of stability proofs for dipole vortices. Phys. Fluids A Fluid Dyn. 1992, 4, 467–476. [Google Scholar] [CrossRef]
- Sutyrin, G. Why compensated cold-core rings look stable. Geophys. Res. Lett. 2015, 42, 5395–5402. [Google Scholar] [CrossRef]
- Sutyrin, G.G.; Flierl, G.R. Intense Vortex Motion on the Beta Plane: Development of the Beta Gyres. J. Atmos. Sci. 1994, 51, 773–790. [Google Scholar] [CrossRef]
- Sutyrin, G.G.; Hesthaven, J.S.; Lynov, J.P.; Rasmussen, J.J. Dynamical properties of vortical structures on the beta-plane. J. Fluid Mech. 1994, 268, 103–131. [Google Scholar] [CrossRef]
- Vandermeirsh, F.; Morel, Y.; Sutyrin, G. Resistance of a Coherent Vortex to a Vertical Shear. J. Phys. Oceanogr. 2002, 32, 3089–3100. [Google Scholar] [CrossRef]
- Flierl, G.; Larichev, V.; McWilliams, J.; Reznik, G. The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Ocean. 1980, 5, 1–41. [Google Scholar] [CrossRef]
- Flierl, G.R.; Haines, K. The decay of modons due to Rossby wave radiation. Phys. Fluids 1994, 6, 3487–3497. [Google Scholar] [CrossRef]
- Crowe, M.N.; Johnson, E.R. The evolution of surface quasi-geostrophic modons on sloping topography. J. Fluid Mech. 2023, 970, A10. [Google Scholar] [CrossRef]
- Chen, G.; Hana, G.; Yanga, X. On the intrinsic shape of oceanic eddies derived from satellite altimetry. Ocean Remote Sens. Environ. 2019, 228, 75–89. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutyrin, G.G. The Importance of Being Asymmetric for Geophysical Vortices. Symmetry 2023, 15, 2204. https://doi.org/10.3390/sym15122204
Sutyrin GG. The Importance of Being Asymmetric for Geophysical Vortices. Symmetry. 2023; 15(12):2204. https://doi.org/10.3390/sym15122204
Chicago/Turabian StyleSutyrin, Georgi G. 2023. "The Importance of Being Asymmetric for Geophysical Vortices" Symmetry 15, no. 12: 2204. https://doi.org/10.3390/sym15122204
APA StyleSutyrin, G. G. (2023). The Importance of Being Asymmetric for Geophysical Vortices. Symmetry, 15(12), 2204. https://doi.org/10.3390/sym15122204