Differential Energy Criterion of Brittle Fracture as a Criterion for Wood’s Transition to the Plastic Deformation Stage
Abstract
:1. Introduction
2. Methodology and Results
2.1. Description of the Physical Model of the Research Object
2.2. Load-Displacement Curve in Compression Tests of Wood along the Fibers
2.3. Load-Displacement Model
2.4. The Highest Value of Tangential Stiffness and Tangential Modulus of Elasticity
2.5. Parameter a for the Load-Displacement Curve Equation
2.6. Example
2.7. Application of the Differential Energy Criterion for Brittle Fracture
2.8. Comparison of Simulation Results with Experimental Data
2.9. To the Determination of Parameter and
3. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guillerme, A. Wood versus Iron: The strength of materials in early 19th century France. Hist. Technol. Int. J. 1988, 6, 239–252. [Google Scholar] [CrossRef]
- Yu, M.H. Advances in strength theories for materials under complex stress state in the 20th Century. Appl. Mech. Rev. 2002, 55, 169. [Google Scholar] [CrossRef]
- Qu, R.T.; Zhang, Z.J.; Zhang, P.; Liu, Z.Q.; Zhang, Z.F. Generalized energy failure criterion. Sci. Rep. 2016, 6, 23359. [Google Scholar] [CrossRef] [Green Version]
- Walley, S.M.; Rogers, S.J. Is Wood a Material? Taking the Size Effect Seriously. Materials 2022, 15, 5403. [Google Scholar] [CrossRef] [PubMed]
- Berto, F.; Lazzarin, P. Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Mater. Sci. Eng. R Rep. 2014, 75, 1–48. [Google Scholar] [CrossRef]
- Cicero, S.; Fuentes, J.D.; Torabi, A.R. Using the Equivalent Material Concept and the Average Strain Energy Density to Analyse the Fracture Behaviour of Structural Materials. Appl. Sci. 2020, 10, 1601. [Google Scholar] [CrossRef] [Green Version]
- Lazzarin, P.; Zambardi, R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-Shaped notches. Int. J. Fract. 2001, 112, 275–298. [Google Scholar] [CrossRef]
- Chen, H.; Xing, H.; Imtiaz, H.; Liu, B. How to obtain a more accurate maximum energy release rate for mixed mode fracture. Forces Mech. 2022, 7, 100077. [Google Scholar] [CrossRef]
- Hou, C.; Jin, X.; Fan, X.; Xu, R.; Wang, Z. A generalized maximum energy release rate criterion for mixed mode fracture analysis of brittle and quasi-brittle materials. Theor. Appl. Fract. Mech. 2019, 100, 78–85. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, D.; Zhao, J. Thermodynamic Approach for the Identification of Instability in the Wood Using Acoustic Emission Technology. Forests 2020, 11, 534. [Google Scholar] [CrossRef]
- Cai, M.; Hou, P.Y. Post-peak stress–strain curves of brittle hard rocks under different loading environment system stiffness. Rock Mech. Rock Eng. 2022, 55, 3837–3857. [Google Scholar] [CrossRef]
- Xie, H.P.; Li, L.Y.; Peng, R.D.; Ju, Y. Energy analysis and criteria for structural failure of rocks. J. Rock Mech. Geotech. Eng. 2009, 1, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Qi, S.; Zou, Y.; Zheng, B. Numerical Studies on the Failure Process of Heterogeneous Brittle Rocks or Rock-Like Materials under Uniaxial Compression. Materials 2017, 10, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, L.F.; Tanzi, B.N.R.; Colpo, A.B.; Sobczyk, M.; Lacidogna, G.; Niccolini, G.; Iturrioz, I. Analysis of Acoustic Emission Activity during Progressive Failure in Heterogeneous Materials: Experimental and Numerical Investigation. Appl. Sci. 2022, 12, 3918. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, L.; Li, X.; Guo, Y.; Liu, H.; Wang, J. Effects of Strain Rate and Temperature on Physical Mechanical Properties and Energy Dissipation Features of Granite. Mathematics 2022, 10, 1521. [Google Scholar] [CrossRef]
- Khaji, Z.; Fakoor, M.; Farid, H.M.; Alderliesten, R. Applying the new experimental midpoint concept on strain energy density for fracture assessment of composite materials. Theor. Appl. Fract. Mech. 2022, 121, 103522. [Google Scholar] [CrossRef]
- Fan, B.; Guo, B.; Gao, Y.; Yu, J.; Hu, S. Study of fracture parameters and complete fracture process of concrete at low temperatures using an energy approach. Eng. Fract. Mech. 2022, 263, 108274. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, C.; Wei, X.A.; Xie, W. Experimental study on mechanical properties and failure modes of pre-existing cracks in sandstone during uniaxial tension/compression testing. Eng. Fract. Mech. 2021, 255, 107966. [Google Scholar] [CrossRef]
- Boccacci, G.; Frasca, F.; Bertolin, C.; Siani, A.M. Influencing Factors in Acoustic Emission Detection: A Literature Review Focusing on Grain Angle and High/Low Tree Ring Density of Scots Pine. Appl. Sci. 2022, 12, 859. [Google Scholar] [CrossRef]
- Gong, F.; Zhang, P.; Luo, S.; Li, J.; Huang, D. Theoretical damage characterisation and damage evolution process of intact rocks based on linear energy dissipation law under uniaxial compression. Int. J. Rock Mech. Min. Sci. 2021, 146, 104858. [Google Scholar] [CrossRef]
- Gong, F.; Yan, J.; Luo, S.; Li, X. Investigation on the Linear Energy Storage and Dissipation Laws of Rock Materials Under Uniaxial Compression. Rock Mech. Rock Eng. 2019, 52, 4237–4255. [Google Scholar] [CrossRef]
- Xu, L.; Gong, F.Q.; Liu, Z.X. Experiments on rockburst proneness of pre-heated granite at different temperatures: Insights from energy storage, dissipation and surplus. J. Rock Mech. Geotech. Eng. 2022, 14, 1343–1355. [Google Scholar] [CrossRef]
- Xu, X.; Yue, C.; Xu, L. Thermal Damage Constitutive Model and Brittleness Index Based on Energy Dissipation for Deep Rock. Mathematics 2022, 10, 410. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Zhang, J.; Xu, B.; Zhang, L.; Li, W. Rockburst Precursors and the Dynamic Failure Mechanism of the Deep Tunnel: A Review. Energies 2021, 14, 7548. [Google Scholar] [CrossRef]
- Valipour, H.; Khorsandnia, N.; Crews, K.; Foster, S. A simple strategy for constitutive modelling of timber. Constr. Build. Mater. 2014, 53, 138–148. [Google Scholar] [CrossRef]
- Namari, S.; Drosky, L.; Pudlitz, B.; Haller, P.; Sotayo, A.; Bradley, D.; Mehra, S.; O’Ceallaigh, C.; Harte, A.M.; El-Houjeyri, I.; et al. Mechanical properties of compressed wood. Constr. Build. Mater. 2021, 301, 124269. [Google Scholar] [CrossRef]
- Warguła, Ł.; Wojtkowiak, D.; Kukla, M.; Talaśka, K. Symmetric Nature of Stress Distribution in the Elastic-Plastic Range of Pinus L. Pine Wood Samples Determined Experimentally and Using the Finite Element Method (FEM). Symmetry 2021, 13, 39. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, D.; Han, Z.; Li, X.; Zhou, Z. Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression. Int. J. Rock Mech. Min. Sci. 2019, 115, 33–47. [Google Scholar] [CrossRef]
- Khorsandnia, N.; Crews, K. Application of Quasi-Brittle Material Model for Analysis of Timber Members. Aust. J. Struct. Eng. 2015, 16, 99–115. [Google Scholar] [CrossRef]
- Tu, J.; Yu, L.; Zhao, J.; Zhang, J.; Zhao, D. Damage Modes Recognition of Wood Based on Acoustic Emission Technique and Hilbert–Huang Transform Analysis. Forests 2022, 13, 631. [Google Scholar] [CrossRef]
- Bertolin, C.; de Ferri, L.; Berto, F. Calibration Method for Monitoring Hygro-Mechanical Reactions of Pine and Oak Wood by Acoustic Emission Nondestructive Testing. Materials 2020, 13, 3775. [Google Scholar] [CrossRef] [PubMed]
- Slepyan, L.I. On discrete models in fracture mechanics. Mech. Solids 2010, 45, 803–814. [Google Scholar] [CrossRef]
- Musah, M.; Diaz, J.H.; Alawode, A.O.; Gallagher, T.; Peresin, M.S.; Mitchell, D.; Smidt, M.; Via, B. Field Assessment of Downed Timber Strength Deterioration Rate and Wood Quality Using Acoustic Technologies. Forests 2022, 13, 752. [Google Scholar] [CrossRef]
- Blagojević, M.; Pešić, D.; Mijalković, M.; Glišović, S. Jedinstvena funkcija za opisivanje naprezanja i deformacije betona u požaru. Građevinar 2011, 63, 19–24. Available online: https://hrcak.srce.hr/clanak/96329 (accessed on 14 July 2022).
- Stojković, N.; Perić, D.; Stojić, D.; Marković, N. New stress–strain model for concrete at high temperatures. Teh. Vjesn. 2017, 24, 863–868. Available online: https://hrcak.srce.hr/183048 (accessed on 14 July 2022).
- Katarov, V.; Syunev, V.; Kolesnikov, G. Analytical Model for the Load-Bearing Capacity Analysis of Winter Forest Roads: Experiment and Estimation. Forests 2022, 13, 1538. [Google Scholar] [CrossRef]
- Kolesnikov, G.; Zaitseva, M.; Petrov, A. Analytical Model with Independent Control of Load–Displacement Curve Branches for Brittle Material Strength Prediction Using Pre-Peak Test Loads. Symmetry 2022, 14, 2089. [Google Scholar] [CrossRef]
- Braun, M.; Pełczyński, J.; Al Sabouni-Zawadzka, A.; Kromoser, B. Calibration and Validation of a Linear-Elastic Numerical Model for Timber Step Joints Based on the Results of Experimental Investigations. Materials 2022, 15, 1639. [Google Scholar] [CrossRef]
- Chu, Y.; Shi, B.; Gong, Y. Experimental study on compressive behavior of intermediate slender timber columns with local damage and the retrofitting techniques for the damaged columns. Structures 2022, 46, 1709–1725. [Google Scholar] [CrossRef]
- Yu, Y.; Zeng, W.; Liu, W.; Zhang, H.; Wang, X. Crack Propagation and Fracture Process Zone (FPZ) of Wood in the Longitudinal Direction Determined Using Digital Image Correlation (DIC) Technique. Remote Sens. 2019, 11, 1562. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Chen, X.; Wang, Z.; Ning, Y.; Bai, L. Identification of mixed mode damage types on rock-concrete interface under cyclic loading. Int. J. Fatigue 2022, 166, 107273. [Google Scholar] [CrossRef]
- Noii, N.; Khodadadian, A.; Ulloa, J.; Aldakheel, F.; Wick, T.; François, S.; Wriggers, P. Bayesian Inversion with Open-Source Codes for Various One-Dimensional Model Problems in Computational Mechanics. Arch. Comput. Methods Eng. 2022, 29, 4285–4318. [Google Scholar] [CrossRef]
- Baldwin, R.; North, M.A. Stress-strain curves of concrete at high temperature—A review. Fire Saf. Sci. 1969, 785, 1. Available online: http://www.iafss.org/publications/frn/785/-1/view/frn_785.pdf (accessed on 17 October 2022).
- Kolesnikov, G. Analysis of Concrete Failure on the Descending Branch of the Load-Displacement Curve. Crystals 2020, 10, 921. [Google Scholar] [CrossRef]
- Kolesnikov, G.; Shekov, V. Energy Criterion for Fracture of Rocks and Rock-like Materials on the Descending Branch of the Load–Displacement Curve. Materials 2022, 15, 7907. [Google Scholar] [CrossRef]
- Luo, M.; Li, W.; Shi, H. The Relationship between Fuzzy Reasoning Methods Based on Intuitionistic Fuzzy Sets and Interval-Valued Fuzzy Sets. Axioms 2022, 11, 419. [Google Scholar] [CrossRef]
- Díaz-Vázquez, S.; Torres-Manzanera, E.; Díaz, I.; Montes, S. On the Search for a Measure to Compare Interval-Valued Fuzzy Sets. Mathematics 2021, 9, 3157. [Google Scholar] [CrossRef]
- Tu, J.; Zhao, D.; Zhao, J.; Zhao, Q. Experimental study on crack initiation and propagation of wood with LT-type crack using digital image correlation (DIC) technique and acoustic emission (AE). Wood Sci. Technol. 2021, 55, 1577–1591. [Google Scholar] [CrossRef]
- Zeng, G.; Yang, X.; Chen, L.; Bai, F. Damage Evolution and Crack Propagation in Semicircular Bending Asphalt Mixture Specimens. Acta Mech. Solida Sin. 2016, 29, 596–609. [Google Scholar] [CrossRef]
- Fajdiga, G.; Rajh, D.; Nečemer, B.; Glodež, S.; Šraml, M. Experimental and Numerical Determination of the Mechanical Properties of Spruce Wood. Forests 2019, 10, 1140. [Google Scholar] [CrossRef] [Green Version]
- Hurley, R.C.; Lind, J.; Pagan, D.C.; Akin, M.C.; Herbold, E.B. In situ grain fracture mechanics during uniaxial compaction of granular solids. J. Mech. Phys. Solids 2018, 112, 273–290. [Google Scholar] [CrossRef]
- Löwe, R.; Sedlecký, M.; Sikora, A.; Prokůpková, A.; Modlinger, R.; Novotný, K.; Turčáni, M. How Bark Beetle Attack Changes the Tensile and Compressive Strength of Spruce Wood (Picea abies (L.) H. Karst.). Forests 2022, 13, 87. [Google Scholar] [CrossRef]
- Zeng, G.; Yang, X.; Yin, A.; Bai, F. Simulation of damage evolution and crack propagation in three-point bending pre-cracked asphalt mixture beam. Constr. Build. Mater. 2014, 55, 323–332. [Google Scholar] [CrossRef]
- Shen, Y.; Yan, X.; Liu, H.; Wu, G.; He, W. Enhancing the In-Plane Behavior of a Hybrid Timber Frame–Mud and Stone Infill Wall Using PP Band Mesh on One Side. Polymers 2022, 14, 773. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhao, R.; Zhong, Y.; Chen, Y. Compressive Mechanical Properties of Larch Wood in Different Grain Orientations. Polymers 2022, 14, 3771. [Google Scholar] [CrossRef] [PubMed]
- Svatoš-Ražnjević, H.; Orozco, L.; Menges, A. Advanced Timber Construction Industry: A Review of 350 Multi-Storey Timber Projects from 2000–2021. Buildings 2022, 12, 404. [Google Scholar] [CrossRef]
- Voulpiotis, K.; Köhler, J.; Jockwer, R.; Frangi, A. A Holistic Framework for Designing for Structural Robustness in Tall Timber Buildings. Eng. Struct. 2021, 227, 111432. [Google Scholar] [CrossRef]
- Yang, L.; Yang, M.; Yang, G. Modeling fractures and cracks on tree branches. Comput. Graph. 2019, 80, 63–72. [Google Scholar] [CrossRef]
- Zelinka, S.L.; Altgen, M.; Emmerich, L.; Guigo, N.; Keplinger, T.; Kymäläinen, M.; Thybring, E.E.; Thygesen, L.G. Review of Wood Modification and Wood Functionalization Technologies. Forests 2022, 13, 1004. [Google Scholar] [CrossRef]
- Ge, M.; Cheng, X.; Huang, W.; Hu, R.; Cheng, Y. Damage mode and load distribution of countersunk bolted composite joints. J. Compos. Mater. 2021, 55, 1717–1732. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Y.; Yue, C.; Zhao, W.; Lian, C.; Zhang, K.; Zheng, J.; Yue, Z. An Experimental and Numerical Study on Impact and Compression after Impact of Stiffened Composite Panels. Polymers 2023, 15, 165. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Cheng, X.; Zhang, Q. Compressive test and numerical simulation of center-notched composite laminates with different crack configurations. Polym. Compos. 2017, 38, 2631–2641. [Google Scholar] [CrossRef]
- Qi, J.; Li, C.; Tie, Y.; Zheng, Y.; Cui, Z.; Duan, Y. An Ordinary State-Based Peridynamic Model of Unidirectional Carbon Fiber Reinforced Polymer Material in the Cutting Process. Polymers 2023, 15, 64. [Google Scholar] [CrossRef]
- Ge, M.M.; Cheng, X.Q.; Zhang, Q.; Xu, Y. Tensile Test and Simulation of Woven Composite Laminates after High Velocity Impact. In Advanced Materials Research; Trans Tech Publications, Ltd.: Stafa, Zurich, Switzerland, 2014; Volume 971–973, pp. 232–235. [Google Scholar] [CrossRef]
- Kolesnikov, G.; Meltser, R. A Damage Model to Trabecular Bone and Similar Materials: Residual Resource, Effective Elasticity Modulus, and Effective Stress under Uniaxial Compression. Symmetry 2021, 13, 1051. [Google Scholar] [CrossRef]
Curve | ||||
---|---|---|---|---|
1 | 73.54 | 1.29 | 4.0 | 7.0 |
2 | 90.31 | 1.44 | 3.5 | 5.0 |
3 | 88.67 | 1.42 | 3.5 | 2.0 |
Curve by Figure 2 | ||||||
---|---|---|---|---|---|---|
1 | 73.54 | 1.29 | 4.0 | 7.0 | 33.9 | 0.65 |
2 | 90.31 | 1.44 | 3.5 | 5.0 | 40.3 | 0.67 |
3 | 88.67 | 1.42 | 3.5 | 2.0 | 39.6 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesnikov, G.; Gavrilov, T.; Zaitseva, M. Differential Energy Criterion of Brittle Fracture as a Criterion for Wood’s Transition to the Plastic Deformation Stage. Symmetry 2023, 15, 274. https://doi.org/10.3390/sym15020274
Kolesnikov G, Gavrilov T, Zaitseva M. Differential Energy Criterion of Brittle Fracture as a Criterion for Wood’s Transition to the Plastic Deformation Stage. Symmetry. 2023; 15(2):274. https://doi.org/10.3390/sym15020274
Chicago/Turabian StyleKolesnikov, Gennady, Timmo Gavrilov, and Maria Zaitseva. 2023. "Differential Energy Criterion of Brittle Fracture as a Criterion for Wood’s Transition to the Plastic Deformation Stage" Symmetry 15, no. 2: 274. https://doi.org/10.3390/sym15020274
APA StyleKolesnikov, G., Gavrilov, T., & Zaitseva, M. (2023). Differential Energy Criterion of Brittle Fracture as a Criterion for Wood’s Transition to the Plastic Deformation Stage. Symmetry, 15(2), 274. https://doi.org/10.3390/sym15020274