Manifestation of Supramolecular Chirality during Adsorption on CsCuCl3 and γ-Glycine Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. γ-Glycine Crystallization under Viedma Ripening Conditions
2.2.2. CsCuCl3 Crystallization under Viedma Ripening Conditions
2.2.3. Single-Crystal X-ray Crystallography
2.2.4. Silica Gel Modification
2.2.5. SEM of Modified Silica Gel Samples
2.2.6. Porosity Characterization
2.2.7. Enantiomer Vapor Adsorption under Gas Chromatography Conditions
2.2.8. Adsorption of Menthols from Solutions
2.3. Calculations
3. Results
3.1. Properties of γ-Glycine and CsCuCl3 Crystals and Silica Gel-Based Adsorbents
3.2. Isotherms of Enantiomer Vapors on the Crystals Studied
3.3. Isotherms of Menthols’ Adsorption from Solutions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Viedma, C.; Coquerel, G.; Cintas, P. Crystallization of Chiral Molecules. In Handbook of Crystal Growth; Elsevier: Amsterdam, The Netherlands, 2015; pp. 952–1002. [Google Scholar]
- Liu, M.; Zhang, L.; Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397. [Google Scholar] [CrossRef]
- Bonner, W.A. Origins of Chiral Homogeneity in Nature; John Wiley&Sons, Inc.: Hoboken, NJ, USA, 1988; Volume 18, p. 96. [Google Scholar]
- Dutta, S.; Gellman, A.J. Enantiomer surface chemistry: Conglomerate versus racemate formation on surfaces. Chem. Soc. Rev. 2017, 46, 7787–7839. [Google Scholar] [CrossRef]
- Mateos-Timoneda, M.A.; Crego-Calama, M.; Reinhoudt, D.N. Supramolecular chirality of self-assembled systems in solution. Chem. Soc. Rev. 2004, 33, 363–372. [Google Scholar] [CrossRef]
- Borovkov, V. Supramolecular chirality in porphyrin chemistry. Symmetry 2014, 6, 256–294. [Google Scholar] [CrossRef]
- Blackmond, D.G. The Origin of Biological Homochirality. Cold Spring Harb. Perspect. Biol. 2019, 11, a032540. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Wei, Z. Supramolecular helices: Chirality transfer from conjugated molecules to structures. Adv. Mater. 2013, 25, 6039–6049. [Google Scholar] [CrossRef]
- Percec, V.; Leowanawat, P. Why are biological systems homochiral. Isr. J. Chem. 2011, 51, 1107. [Google Scholar] [CrossRef]
- Plass, K.E.; Grzesiak, A.L.; Matzger, A.J. Molecular packing and symmetry of two-dimensional crystals. Acc. Chem. Res. 2007, 40, 287–293. [Google Scholar] [CrossRef]
- Pakalidou, N.; Mu, J.; Masters, A.J.; Avendano, C. Engineering porous two-dimensional lattices via self-assembly of non-convex hexagonal platelets. Mol. Syst. Des. Eng. 2020, 5, 376–384. [Google Scholar] [CrossRef]
- Green, B.S.; Lahav, M. Crystallization and solid-state reaction as a route to asymmetric synthesis from achiral starting materials. J. Mol. Evol. 1975, 6, 99–115. [Google Scholar] [CrossRef]
- Matsumoto, A.; Kaimori, Y.; Kawasaki, T.; Soai, K. Asymmetric autocatalysis initiated by crystal chirality of achiral compounds. In Advances in Asymmetric Autocatalysis and Related Topics; Pályi, G., Zucchi, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 337–355. [Google Scholar]
- Gus’kov, V.Y.; Gainullina, Y.Y.; Suhareva, D.A.; Sidel’nikov, A.V.; Kudasheva, F.K. Chiral surfaces formed by uracil, 5-hydroxy-6-methyluracil and melamine supramolecular structures. Int. J. Appl. Chem. 2016, 12, 359–373. [Google Scholar]
- Zhang, H.-M.; Pei, Z.-K.; Xie, Z.-X.; Long, L.-S.; Mao, B.-W.; Xu, X.; Zheng, L.-S. Preparing self-assembled monolayers of cyanuric acid and melamine complex on HOPG surfaces. J. Phys. Chem. C 2009, 113, 13940–13946. [Google Scholar] [CrossRef]
- Zhang, H.-M.; Xie, Z.-X.; Long, L.-S.; Zhong, H.-P.; Zhao, W.; Mao, B.-W.; Xu, X.; Zheng, L.-S. One-step preparation of large-scale self-assembled monolayers of cyanuric acid and melamine supramolecular species on Au(111) surfaces. J. Phys. Chem. C 2008, 112, 4209–4218. [Google Scholar] [CrossRef]
- D’Urso, A.; Marino, N.; Gaeta, M.; Rizzo, M.S.; Cristaldi, D.A.; Fragalà, M.E.; Pappalardo, S.; Gattuso, G.; Notti, A.; Parisi, M.F.; et al. Porphyrin stacks as an efficient molecular glue to induce chirality in hetero-component calixarene–porphyrin assemblies. New J. Chem. 2017, 41, 8078–8083. [Google Scholar] [CrossRef]
- Nardis, S.; Pomarico, G.; Tortora, L.; Capuano, R.; D’Amico, A.; Natale, C.D.; Paolesse, R. Sensing mechanisms of supramolecular porphyrin aggregates: A teamwork task for the detection of gaseous analytes. J. Mater. Chem. 2011, 21, 18638–18644. [Google Scholar] [CrossRef]
- Kniazeva, M.V.; Ovsyannikov, A.S.; Samigullina, A.I.; Islamov, D.R.; Gubaidullin, A.T.; Dorovatovskii, P.V.; Lazarenko, V.A.; Solovieva, S.E.; Antipin, I.S.; Ferlay, S. Impact of flexible succinate connectors on the formation of tetrasulfonylcalix[4]arene based nano-sized polynuclear cages: Structural diversity and induced chirality study. CrystEngComm 2022, 24, 628–638. [Google Scholar] [CrossRef]
- Song, X.; Li, Y.; Gan, L.; Wang, Z.; Yu, J.; Xu, R. Heteroatom-stabilized chiral framework of aluminophosphate molecular sieves. Angew. Chem. Int. Ed. 2009, 48, 314–317. [Google Scholar] [CrossRef]
- Lin, Z.-E.; Yao, Y.-W.; Zhang, J.; Yang, G.-Y. Synthesis and structure of a novel open-framework zincophosphate with intersecting three-dimensional helical channels. J. Chem. Soc. Dalton Trans. 2002, 24, 4527–4528. [Google Scholar] [CrossRef]
- Yashima, E.; Maeda, K.; Nishimura, T. Detection and amplification of chirality by helical polymers. Chem. Eur. J. 2004, 10, 42–51. [Google Scholar] [CrossRef]
- Gaeta, M.; Sortino, G.; Randazzo, R.; Pisagatti, I.; Notti, A.; Fragalà, M.E.; Parisi, M.F.; D’Urso, A.; Purrello, R. Long-range chiral induction by a fully noncovalent approach in supramolecular porphyrin–calixarene assemblies. Chem. Eur. J. 2020, 26, 3515–3518. [Google Scholar] [CrossRef]
- Nicosia, A.; Vento, F.; Marletta, G.; Messina, G.M.L.; Satriano, C.; Villari, V.; Micali, N.; Martino, M.T.D.; Schotman, M.J.G.; Mineo, P.G. Porphyrin-based supramolecular flags in the thermal gradients’ wind: What breaks the symmetry, how and why. Nanomaterials 2021, 11, 1673. [Google Scholar] [CrossRef]
- Weissbuch, I.; Leiserowitz, L.; Lahav, M. Achiral organic, inorganic, and metal crystals as auxiliaries for asymmetric transformations. Isr. J. Chem. 2011, 51, 1017–1033. [Google Scholar] [CrossRef]
- Weissbuch, I.; Addad, L.; Leiserowitz, L.; Lahav, M. Total asymmetric transformations at interfaces with centrosymmetric crystals: Role of hydrophobic and kinetic effects in the crystallization of the system glycine/aamino acids. J. Am. Chem. Soc. 1988, 110, 561–567. [Google Scholar] [CrossRef]
- Davankov, V.A. Biological Homochirality on the Earth, or in the Universe? A Selective Review. Symmetry 2018, 10, 749. [Google Scholar] [CrossRef]
- Davankov, V.A. Chance and necessity in the evolution of matter to Life: A comprehensive hypothesis. Symmetry 2021, 13, 1918. [Google Scholar] [CrossRef]
- Korenic, A.; Perovic, S.; Cirkovic, M.M.; Miquel, P.-A. Symmetry breaking and functional incompleteness in biological systems. Prog. Biophys. Mol. Biol. 2020, 150, 1–12. [Google Scholar] [CrossRef]
- Takahashi, J.-I.; Kobayashi, K. Origin of terrestrial bioorganic homochirality and symmetry breaking in the universe. Symmetry 2019, 11, 919. [Google Scholar] [CrossRef]
- Arlegui, A.; Soler, B.; Galindo, A.; Arteaga, O.; Canillas, A.; Ribó, J.M.; El-Hachemi, Z.; Crusats, J.; Moyano, A. Spontaneous mirror-symmetry breaking coupled to top-bottom chirality transfer: From porphyrin self-assembly to scalemic Diels–Alder adducts. Chem. Commun. 2019, 55, 12219–12222. [Google Scholar] [CrossRef]
- Viedma, C. Chiral symmetry breaking during crystallization: Complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 2005, 94, 065504. [Google Scholar] [CrossRef]
- Frank, F.C. Spontaneous asymmetric synthesis. Biochim. Biophys. Acta 1953, 11, 459–463. [Google Scholar] [CrossRef]
- Soai, K.; Shibata, T.; Morioka, H.; Choji, K. Asymmetric autocatalysis and amplification of enatiomeric excess of a chiral molecule. Nature 1995, 378, 767–768. [Google Scholar] [CrossRef]
- Soai, K. Asymmetric autocatalysis. Chiral symmetry breaking and the origins of homochirality of organic molecules. Proc. Jpn. Acad. Ser. B 2019, 95, 89–110. [Google Scholar] [CrossRef]
- Sogutoglu, L.-C.; Steendam, R.R.E.; Meekes, H.; Vlieg, E.; Rutjes, F.P.J.T. Viedma ripening: A reliable crystallisation method to reach single chirality. Chem. Soc. Rev. 2015, 44, 6723–6732. [Google Scholar] [CrossRef]
- Walsh, M.P.; Barclay, J.A.; Begg, C.S.; Xuan, J.; Johnson, N.T.; Cole, J.C.; Kitching, M.O. Identifying a hidden conglomerate chiral pool in the CSD. JACS Au 2022, 2, 2235–2250. [Google Scholar] [CrossRef]
- Matsuura, T.; Koshima, H. Introduction to chiral crystallization of achiral organic compounds. Spontaneous generation of chirality. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 7–24. [Google Scholar] [CrossRef]
- Sivakumar, R.; Kwiatoszynski, J.; Fouret, A.; Nguyen, T.P.T.; Ramrup, P.; Cheung, P.S.M.; Cintas, P.; Viedma, C.; Cuccia, L.A. Enantiomer-specific oriented attachment of guanidine carbonate crystals. Cryst. Growth Des. 2016, 16, 3573–3576. [Google Scholar] [CrossRef]
- Gus’kov, V.Y.; Allayarova, D.A.; Garipova, G.Z.; Pavlova, I.N. Supramolecular chiral surface of nickel sulfate hexahydrate crystals and its ability to chiral recognition by enantiomers adsorption data. New J. Chem. 2020, 44, 17769–17779. [Google Scholar] [CrossRef]
- Gus’kov, V.Y.; Shayakhmetova, R.K.; Allayarova, D.A.; Sharafutdinova, Y.F.; Gilfanova, E.L.; N.Pavlova, I.; Garipova, G.Z. Mechanism of chiral recognition by enantiomorphous cytosine crystals during enantiomer adsorption. Phys. Chem. Chem. Phys. 2021, 23, 11968–11979. [Google Scholar] [CrossRef]
- Gus’kov, V.Y.; Gallyamova, G.A.; Sairanova, N.A.; Sharafutdinova, Y.F.; Khalilov, L.M.; Mukhametzyanov, T.A.; Zinoviev, I.M.; Gainullina, Y.Y. Possibility of chiral recognition by adsorption on enantiomorphous crystals: The impact of crystal surface polarity. Phys. Chem. Chem. Phys. 2022, 24, 26785–26794. [Google Scholar] [CrossRef]
- Tarasevych, A.V.; Sorochinsky, A.E.; Kukhar, V.P.; Toupet, L.; Crassous, J.; Guillemin, J.-C. Attrition-induced spontaneous chiral amplification of the γ polymorphic modification of glycine. CrystEngComm 2015, 17, 1513–1517. [Google Scholar] [CrossRef]
- Matsumoto, A.; Ozaki, H.; Tsuchiya, S.; Asahi, T.; Lahav, M.; Kawasaki, T.; Soai, K. Achiral amino acid glycine acts as an origin of homochirality in asymmetric autocatalysis. Org. Biomol. Chem. 2019, 17, 4200–4203. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, A.V.; Yashin, Y.I. Gas Adsorption Chromatography; Plenum Press: New York, NY, USA, 1969. [Google Scholar]
- Cerefolini, G.F.; Rudzinski, W. Theoretical principles of single- and mixed-gas adsorption equilibria on heterogeneous solid surfaces. In Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces; Rudzinski, W., Steele, W.A., Zgrablich, G., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 1–104. [Google Scholar]
- Dodge, Y. The Concise Encyclopedia of Statistics; Springer: Berlin/Heidelberg, Germany, 2008; p. 616. [Google Scholar]
- Ishikawa, K.; Tanaka, M.; Suzuki, T.; Sekine, A.; Kawasaki, T.; Soai, K.; Shiro, M.; Lahav, M.; Asahi, T. Absolute chirality of the c-polymorph of glycine: Correlation of the absolute structure with the optical rotation. Chem. Commun. 2012, 48, 6031–6033. [Google Scholar] [CrossRef] [PubMed]
- Schlueter, A.W.; Jacobson, R.A.; Rundle, R.E. A Redetermination of the Crystal Structure of CsCuCl3. Inorg. Chem. 1966, 5, 277–280. [Google Scholar] [CrossRef]
- Wang, L.; Kong, H.; Song, X.; Liu, X.; Wang, H. Chiral supramolecular self-assembly of rubrene. Phys. Chem. Chem. Phys. 2010, 12, 14637–14832. [Google Scholar] [CrossRef]
γ-Glycine | CsCuCl3 | |
---|---|---|
Empirical formula | C2H5NO2 | Cl3CsCu |
Formula weight | 75.07 | 302.80 |
Crystal system | trigonal | hexagonal |
Space group | P32 | P6122 |
a, Å | 7.0390(2) | 7.1979(5) |
b, Å | 7.0390(2) | 7.1979(5) |
c, Å | 5.4794(2) | 18.1525(13) |
α, ° | 90 | 90 |
β, ° | 90 | 90 |
γ, ° | 120 | 120 |
Volume, Å3 | 235.118(16) | 814.48(13) |
Z | 3 | 6 |
ρcalc, g/cm3 | 1.591 | 3.704 |
μ, mm−1 | 0.141 | 11.930 |
F(000) | 120.0 | 810 |
Radiation | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ range, ° | 6.684 to 57.902 | 6.536 to 64.216 |
Index ranges | −8 ≤ h ≤ 9, −9 ≤ k ≤ 8, −6 ≤ l ≤ 6 | −9 ≤ h ≤ 9, −8 ≤ k ≤ 8, −25 ≤ l ≤ 15 |
Reflections collected | 3336 | 3046 |
Independent reflections | 765 [Rint = 0.0277, Rsigma = 0.0161] | 872 [Rint = 0.0831] |
Goodness-of-fit on F2 | 1.120 | 1.044 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0224, wR2 = 0.0581 | R1 = 0.0566, wR2 = 0.1219 |
Final R indexes [all data] | R1 = 0.0227, wR2 = 0.0585 | R1 = 0.0724, wR2 = 0.1343 |
Largest diff. peak/hole/e Å−3 | 0.20/−0.12 | 1.19/−2.94 |
Flack parameter | −0.6(4) | −0.02(8) |
Silica Gel | Initial | +γ-Glycine | +CsCuCl3 |
---|---|---|---|
S | 350 | 690 | 166 |
Sm | 0 | 220 | 0 |
V | 0.83 | 1.02 | 0.42 |
Vm | 0 | 0.12 | 0 |
Dp | 41 | 15 | 41 |
P, Pa | p | P, Pa | p | P, Pa | p |
---|---|---|---|---|---|
0.7 | 0.2501 | 10.8 | 0.3659 | 16.6 | 0.0756 |
1.4 | 0.0199 | 11.5 | 0.4172 | 17.4 | 0.3346 |
7.3 | 0.1103 | 12.3 | 0.2163 | 18.1 | 0.4641 |
8.0 | 0.2362 | 13.0 | 0.1752 | 18.8 | 0.5849 |
8.8 | 0.8444 | 13.9 | 0.1013 | 19.5 | 0.6044 |
9.5 | 0.8052 | 14.5 | 0.0839 | 20.3 | 0.7399 |
10.1 | 0.5798 | 15.4 | 0.0820 | 21.0 | 0.7459 |
P, kPa | p | P, kPa | p | P, kPa | p |
---|---|---|---|---|---|
1.03 | 0.4259 | 2.39 | 0.0032 | 3.41 | 0.0039 |
1.19 | 0.0589 | 2.56 | 0.0072 | 3.59 | 0.0039 |
1.37 | 0.014 | 2.73 | 0.0224 | 3.76 | 0.0044 |
1.54 | 0.0177 | 2.90 | 0.0345 | 3.93 | 0.0002 |
1.71 | 0.0301 | 3.07 | 0.0009 | 4.10 | 0.0002 |
2.22 | 0.0012 | 3.24 | 0.0012 | 4.27 | 0.0002 |
T, °C | KL × 103 | am | KFG × 103 | bf | ||||
---|---|---|---|---|---|---|---|---|
R-(+) | S-(−) | R-(+) | S-(−) | R-(+) | S-(−) | R-(+) | S-(−) | |
140 | 5.0 ± 0.2 | 6.0 ± 0.2 | 149 ± 5 | 129 ± 3 | 4.6 | 5.8 | 0 | 0.08 |
150 | 6.0 ± 0.3 | 9.0 ± 0.3 | 104 ± 3 | 79 ± 5 | 5.9 | 8.8 | 0.09 | 0.28 |
160 | 4.0 ± 0.2 | 4.0 ± 0.2 | 193 ± 2 | 177 ± 2 | 3.5 | 4.0 | 0.09 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinovyev, I.; Ermolaeva, E.; Sharafutdinova, Y.; Gilfanova, E.; Khalilov, L.; Pavlova, I.; Guskov, V. Manifestation of Supramolecular Chirality during Adsorption on CsCuCl3 and γ-Glycine Crystals. Symmetry 2023, 15, 498. https://doi.org/10.3390/sym15020498
Zinovyev I, Ermolaeva E, Sharafutdinova Y, Gilfanova E, Khalilov L, Pavlova I, Guskov V. Manifestation of Supramolecular Chirality during Adsorption on CsCuCl3 and γ-Glycine Crystals. Symmetry. 2023; 15(2):498. https://doi.org/10.3390/sym15020498
Chicago/Turabian StyleZinovyev, Ilya, Ekaterina Ermolaeva, Yuliya Sharafutdinova, Elmira Gilfanova, Leonard Khalilov, Irina Pavlova, and Vladimir Guskov. 2023. "Manifestation of Supramolecular Chirality during Adsorption on CsCuCl3 and γ-Glycine Crystals" Symmetry 15, no. 2: 498. https://doi.org/10.3390/sym15020498
APA StyleZinovyev, I., Ermolaeva, E., Sharafutdinova, Y., Gilfanova, E., Khalilov, L., Pavlova, I., & Guskov, V. (2023). Manifestation of Supramolecular Chirality during Adsorption on CsCuCl3 and γ-Glycine Crystals. Symmetry, 15(2), 498. https://doi.org/10.3390/sym15020498