Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength
Abstract
:1. Introduction
2. The Model
3. Calculations and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Neutrinoless double- decay | |
NME | Nuclear matrix element |
E2 | Electric quadrupole |
ISM | Interacting shell model |
IBM | Interacting boson method |
QRPA | Quasiparticle random phase approximation |
GCM | Generator-coordinate method |
EDF | Energy density functional |
IM-GCM | In-medium generator-coordinate method |
CC | Coupled-cluster method |
HFB | Hartree-Fock-Bogliubov |
IM-SRG | In-medium similarity renormalization group |
GT | Gamow-Teller |
SRC | Short range correlation |
References
- Avignone, F.T.; Elliott, S.R.; Engel, J. Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 2008, 80, 481–516. [Google Scholar] [CrossRef] [Green Version]
- Caurier, E.; Menéndez, J.; Nowacki, F.; Poves, A. Influence of Pairing on the Nuclear Matrix Elements of the Neutrinoless ββ Decays. Phys. Rev. Lett. 2008, 100, 052503. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, J.; Poves, A.; Caurier, E.; Nowacki, F. Disassembling the nuclear matrix elements of the neutrinoless ββ decay. Nucl. Phys. A 2009, 818, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Horoi, M.; Stoica, S. Shell model analysis of the neutrinoless double-β decay of 48Ca. Phys. Rev. C 2010, 81, 024321. [Google Scholar] [CrossRef] [Green Version]
- Horoi, M. Shell model analysis of competing contributions to the double-β decay of 48Ca. Phys. Rev. C 2013, 87, 014320. [Google Scholar] [CrossRef] [Green Version]
- Horoi, M.; Brown, B.A. Shell-Model Analysis of the 136Xe Double Beta Decay Nuclear Matrix Elements. Phys. Rev. Lett. 2013, 110, 222502. [Google Scholar] [CrossRef] [Green Version]
- Neacsu, A.; Horoi, M. Shell model studies of the 130Te neutrinoless double-β decay. Phys. Rev. C 2015, 91, 024309. [Google Scholar] [CrossRef] [Green Version]
- Horoi, M.; Neacsu, A. Shell model predictions for 124Sn double-β decay. Phys. Rev. C 2016, 93, 024308. [Google Scholar] [CrossRef] [Green Version]
- Iwata, Y.; Shimizu, N.; Otsuka, T.; Utsuno, Y.; Menéndez, J.; Honma, M.; Abe, T. Large-Scale Shell-Model Analysis of the Neutrinoless ββ Decay of 48Ca. Phys. Rev. Lett. 2016, 116, 112502. [Google Scholar] [CrossRef] [Green Version]
- Sen’kov, R.A.; Horoi, M. Shell-model calculation of neutrinoless double-β decay of 76Ge. Phys. Rev. C 2016, 93, 044334. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Kotila, J.; Iachello, F. Limits on Neutrino Masses from Neutrinoless Double-β Decay. Phys. Rev. Lett. 2012, 109, 042501. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Kotila, J.; Iachello, F. Nuclear matrix elements for double-β decay. Phys. Rev. C 2013, 87, 014315. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Kotila, J.; Iachello, F. 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration. Phys. Rev. C 2015, 91, 034304. [Google Scholar] [CrossRef] [Green Version]
- Šimkovic, F.; Pantis, G.; Vergados, J.D.; Faessler, A. Additional nucleon current contributions to neutrinoless double β decay. Phys. Rev. C 1999, 60, 055502. [Google Scholar] [CrossRef] [Green Version]
- Rodin, V.A.; Faessler, A.; Šimkovic, F.; Vogel, P. Uncertainty in the 0νββ decay nuclear matrix elements. Phys. Rev. C 2003, 68, 044302. [Google Scholar] [CrossRef] [Green Version]
- Kortelainen, M.; Civitarese, O.; Suhonen, J.; Toivanen, J. Short-range correlations and neutrinoless double beta decay. Phys. Lett. B 2007, 647, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Kortelainen, M.; Suhonen, J. Improved short-range correlations and 0νββ nuclear matrix elements of 76Ge and 82Se. Phys. Rev. C 2007, 75, 051303. [Google Scholar] [CrossRef] [Green Version]
- Šimkovic, F.; Faessler, A.; Rodin, V.; Vogel, P.; Engel, J. Anatomy of the 0νββ nuclear matrix elements. Phys. Rev. C 2008, 77, 045503. [Google Scholar] [CrossRef] [Green Version]
- Šimkovic, F.; Faessler, A.; Müther, H.; Rodin, V.; Stauf, M. 0νββ-decay nuclear matrix elements with self-consistent short-range correlations. Phys. Rev. C 2009, 79, 055501. [Google Scholar] [CrossRef] [Green Version]
- Šimkovic, F.; Faessler, A.; Vogel, P. 0νββ nuclear matrix elements and the occupancy of individual orbits. Phys. Rev. C 2009, 79, 015502. [Google Scholar] [CrossRef] [Green Version]
- Mustonen, M.T.; Engel, J. Large-scale calculations of the double-β decay of 76Ge,130Te,136Xe, and 150Nd in the deformed self-consistent Skyrme quasiparticle random-phase approximation. Phys. Rev. C 2013, 87, 064302. [Google Scholar] [CrossRef] [Green Version]
- Šimkovic, F.; Rodin, V.; Faessler, A.; Vogel, P. 0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration. Phys. Rev. C 2013, 87, 045501. [Google Scholar] [CrossRef] [Green Version]
- Faessler, A.; González, M.; Kovalenko, S.; Šimkovic, F. Arbitrary mass Majorana neutrinos in neutrinoless double beta decay. Phys. Rev. D 2014, 90, 096010. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, J.; Suhonen, J. Nuclear matrix elements for 0νββ decays with light or heavy Majorana-neutrino exchange. Phys. Rev. C 2015, 91, 024613. [Google Scholar] [CrossRef]
- Fang, D.L.; Faessler, A.; Šimkovic, F. 0νββ-decay nuclear matrix element for light and heavy neutrino mass mechanisms from deformed quasiparticle random-phase approximation calculations for 76Ge,82Se,130Te,136Xe, and 150Nd with isospin restoration. Phys. Rev. C 2018, 97, 045503. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, T.R.; Martínez-Pinedo, G. Energy Density Functional Study of Nuclear Matrix Elements for Neutrinoless ββ Decay. Phys. Rev. Lett. 2010, 105, 252503. [Google Scholar] [CrossRef] [Green Version]
- Vaquero, N.L.; Rodríguez, T.R.; Egido, J.L. Shape and Pairing Fluctuation Effects on Neutrinoless Double Beta Decay Nuclear Matrix Elements. Phys. Rev. Lett. 2013, 111, 142501. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, T.R.; Martínez-Pinedo, G. Neutrinoless ββ decay nuclear matrix elements in an isotopic chain. Phys. Lett. B 2013, 719, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.M.; Song, L.S.; Hagino, K.; Ring, P.; Meng, J. Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory. Phys. Rev. C 2015, 91, 024316. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.M.; Engel, J. Octupole correlations in low-lying states of 150Nd and 150Sm and their impact on neutrinoless double-β decay. Phys. Rev. C 2016, 94, 014306. [Google Scholar] [CrossRef] [Green Version]
- Hinohara, N.; Engel, J. Proton-neutron pairing amplitude as a generator coordinate for double-β decay. Phys. Rev. C 2014, 90, 031301. [Google Scholar] [CrossRef] [Green Version]
- Jiao, C.F.; Engel, J.; Holt, J.D. Neutrinoless double-β decay matrix elements in large shell-model spaces with the generator-coordinate method. Phys. Rev. C 2017, 96, 054310. [Google Scholar] [CrossRef] [Green Version]
- Jiao, C.F.; Horoi, M.; Neacsu, A. Neutrinoless double-β decay of 124Sn, 130Te, and 136Xe in the Hamiltonian-based generator-coordinate method. Phys. Rev. C 2018, 98, 064324. [Google Scholar] [CrossRef] [Green Version]
- Jiao, C.F.; Johnson, C.W. Union of rotational and vibrational modes in generator-coordinate-type calculations, with application to neutrinoless double-β decay. Phys. Rev. C 2019, 100, 031303. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.M.; Bally, B.; Engel, J.; Wirth, R.; Rodríguez, T.R.; Hergert, H. Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of 48Ca. Phys. Rev. Lett. 2020, 124, 232501. [Google Scholar] [CrossRef]
- Novario, S.; Gysbers, P.; Engel, J.; Hagen, G.; Jansen, G.R.; Morris, T.D.; Navrátil, P.; Papenbrock, T.; Quaglioni, S. Coupled-Cluster Calculations of Neutrinoless Double-β Decay in 48Ca. Phys. Rev. Lett. 2021, 126, 182502. [Google Scholar] [CrossRef]
- Engel, J.; Menéndez, J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review. Rep. Prog. Phys. 2017, 80, 046301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, P. Nuclear structure and double beta decay. J. Phys. G Nucl. Part. Phys. 2012, 39, 124002. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Meng, J.; Niu, Y.; Ring, P. Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism. Prog. Part. Nucl. Phys. 2022, 126, 103965. [Google Scholar] [CrossRef]
- Caurier, E.; Nowacki, F.; Poves, A. Nuclear-structure aspects of the neutrinoless ββ-decays. Eur. Phys. J. A 2008, 36, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.L.; Faessler, A.; Rodin, V.; Šimkovic, F. Neutrinoless double-β decay of deformed nuclei within quasiparticle random-phase approximation with a realistic interaction. Phys. Rev. C 2011, 83, 034320. [Google Scholar] [CrossRef] [Green Version]
- Zelevinsky, V.; Auerbach, N.; Loc, B.M. Nuclear structure features of Gamow-Teller excitations. Phys. Rev. C 2017, 96, 044319. [Google Scholar] [CrossRef] [Green Version]
- Horoi, M.; Neacsu, A.; Stoica, S. Statistical analysis for the neutrinoless double-β-decay matrix element of 48Ca. Phys. Rev. C 2022, 106, 054302. [Google Scholar] [CrossRef]
- Goodman, A.L. Advances in Nuclear Physics. In Advances in Nuclear Physics; Negele, J.V., Vogt, E., Eds.; Plenum Press: New York, NY, USA, 1979; Volume 11, p. 263. [Google Scholar]
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: Berlin, Germany, 1980. [Google Scholar]
- Rodríguez, T.R.; Egido, J.L. Triaxial angular momentum projection and configuration mixing calculations with the Gogny force. Phys. Rev. C 2010, 81, 064323. [Google Scholar] [CrossRef]
- Yao, J.M.; Meng, J.; Ring, P.; Vretenar, D. Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. Phys. Rev. C 2010, 81, 044311. [Google Scholar] [CrossRef] [Green Version]
- Poves, A.; Sánchez-Solano, J.; Caurier, E.; Nowacki, F. Shell model study of the isobaric chains A = 50, A = 51 and A = 52. Nucl. Phys. A 2001, 694, 157–198. [Google Scholar] [CrossRef] [Green Version]
- Gniady, A.; Caurier, E.; Nowacki, F. (unpublised).
- Qi, C.; Xu, Z.X. Monopole-optimized effective interaction for tin isotopes. Phys. Rev. C 2012, 86, 044323. [Google Scholar] [CrossRef] [Green Version]
- Caurier, E.; Martínez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A.P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 2005, 77, 427–488. [Google Scholar] [CrossRef] [Green Version]
- Pritychenko, B.; Birch, M.; Singh, B.; Horoi, M. Tables of E2 transition probabilities from the first 2+ states in even–even nuclei. At. Data Nucl. Data Tables 2016, 107, 1–139. [Google Scholar] [CrossRef] [Green Version]
- Bogner, S.K.; Hergert, H.; Holt, J.D.; Schwenk, A.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R. Nonperturbative Shell-Model Interactions from the In-Medium Similarity Renormalization Group. Phys. Rev. Lett. 2014, 113, 142501. [Google Scholar] [CrossRef] [Green Version]
- Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D.J. Coupled-cluster computations of atomic nuclei. Rep. Prog. Phys. 2014, 77, 096302. [Google Scholar] [CrossRef] [Green Version]
- Stroberg, S.R.; Hergert, H.; Holt, J.D.; Bogner, S.K.; Schwenk, A. Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians. Phys. Rev. C 2016, 93, 051301. [Google Scholar] [CrossRef] [Green Version]
- Stroberg, S.R.; Calci, A.; Hergert, H.; Holt, J.D.; Bogner, S.K.; Roth, R.; Schwenk, A. Nucleus-Dependent Valence-Space Approach to Nuclear Structure. Phys. Rev. Lett. 2017, 118, 032502. [Google Scholar] [CrossRef] [Green Version]
- Jansen, G.R.; Schuster, M.D.; Signoracci, A.; Hagen, G.; Navrátil, P. Open sd-shell nuclei from first principles. Phys. Rev. C 2016, 94, 011301. [Google Scholar] [CrossRef] [Green Version]
- Tomoda, T. 0+→2+ neutrinoless ββ decay of 76Ge. Nucl. Phys. A 1988, 484, 635–646. [Google Scholar] [CrossRef]
- Fang, D.L.; Faessler, A. Nuclear matrix elements for the 0νββ(0+→2+) decay of 76Ge within the two-nucleon mechanism. Phys. Rev. C 2021, 103, 045501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, C.; Yuan, C.; Yao, J. Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength. Symmetry 2023, 15, 552. https://doi.org/10.3390/sym15020552
Jiao C, Yuan C, Yao J. Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength. Symmetry. 2023; 15(2):552. https://doi.org/10.3390/sym15020552
Chicago/Turabian StyleJiao, Changfeng, Cenxi Yuan, and Jiangming Yao. 2023. "Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength" Symmetry 15, no. 2: 552. https://doi.org/10.3390/sym15020552
APA StyleJiao, C., Yuan, C., & Yao, J. (2023). Correlation of Neutrinoless Double-β Decay Nuclear Matrix Element with E2 Strength. Symmetry, 15(2), 552. https://doi.org/10.3390/sym15020552