Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(VIII)
Abstract
:1. Introduction
2. Admissible Electromagnetic Fields in Homogeneous Spaces
3. Maxwell’s Equations
4. Solutions of Maxwell Equations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stackel, P. Uber die intagration der Hamiltonschen differentialechung mittels separation der variablen. Math. Ann. 1897, 49, 145–147. [Google Scholar] [CrossRef]
- Eisenhart, L.P. Separable systems of stackel. Ann. Math. 1934, 35, 284–305. [Google Scholar] [CrossRef]
- Levi-Civita, T. Sulla Integraziome Della Equazione Di Hamilton–Jacobi Per Separazione Di Variabili. Math. Ann. 1904, 59, 383–397. [Google Scholar] [CrossRef]
- Jarov-Jrovoy, M.S. Integration of Hamilton–Jacobi equation by complete separation of variables method. J. Appl. Math. Mech. 1963, 27, 173–219. [Google Scholar] [CrossRef]
- Carter, B. A New family of Einstein spaces. Phys. Lett. A 1968, 26, 399–400. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry and separation of variables in the Hamilton–Jacobi equation. Sov. Phys. J. 1978, 21, 1124–1132. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Stackel’s spaces. Sib. Math. J. 1979, 20, 1117–1130. [Google Scholar] [CrossRef]
- Miller, W. Symmetry Furthermore, Separation Of Variables; Cambridge University Press: Cambridge, UK, 1984; p. 318. [Google Scholar]
- Obukhov, V.V. Hamilton–Jacobi equation for a charged test particle in the Stackel space of type (2.0). Symmetry 2020, 12, 1289. [Google Scholar] [CrossRef]
- Obukhov, V.V. Hamilton–Jacobi equation for a charged test particle in the Stackel space of type (2.1). Int. J. Geom. Meth. Mod. Phys. 2020, 14, 2050186. [Google Scholar] [CrossRef]
- Obukhov, V.V. Separation of variables in Hamilton–Jacobi and Klein-Gordon-Fock equations for a charged test particle in the stackel spaces of type (1.1). Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150036. [Google Scholar] [CrossRef]
- Mitsopoulos, A.; Tsamparlis, M.; Leon, G.; Paliathanasis, A. New conservation laws and exact cosmological solutions in Brans-Dicke cosmology with an extra scalar field. Symmetry 2021, 13, 1364. [Google Scholar] [CrossRef]
- Dappiaggi, C.; Juárez-Aubry, B.A.; Marta, A. Ground State for the Klein-Gordon field in anti-de Sitter spacetime with dynamical Wentzell boundary conditions. Phys. Rev. D 2022, 105, 105017. [Google Scholar] [CrossRef]
- Astorga, F.; Salazar, J.F.; Zannias, T. On the integrability of the geodesic flow on a Friedmann-Robertson-Walker spacetime. Phys. Scr. 2018, 93, 085205. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Odintsov, D. Hamiltonian dynamics and Noether symmetries in extended gravity cosmology. Eur. Phys. J. C 2012, 72, 2068. [Google Scholar] [CrossRef]
- Salih, K.; Oktay, C. Generalized cosmological constant from gauging Maxwell-conformal algebra. Phys. Lett. B 2020, 803, 135295. [Google Scholar] [CrossRef]
- Cebecioğlu, O.; Kibaroğlu, S. Maxwell-modified metric affine gravity. Eur. Phys. J. 2021, 81, 900. [Google Scholar] [CrossRef]
- Ildes, M.; Arik, M. Analytic solutions of Brans-Dicke cosmology: Early inflation and late time accelerated expansion. Int. J. Mod. Phys. 2023, 32, 2250131. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Faraoni, V. Searching for dynamical black holes in various theories of gravity. Phys. Rev. D. 2021, 103, 044055. [Google Scholar] [CrossRef]
- Epp, V.; Pervukhina, O. The Stormer problem for an aligned rotator. MNRAS 2018, 474, 5330–5339. [Google Scholar] [CrossRef] [Green Version]
- Epp, V.; Masterova, M.A. Effective potential energy for relativistic particles in the field of inclined rotating magnetized sphere. Astrophys. Space Sci. 2014, 353, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Kumaran, Y.; Ovgun, A. Deflection angle and shadow of the reissner-nordstrom black hole with higher-order magnetic correction in einstein-nonlinear-maxwell fields. Symmetry 2022, 14, 2054. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E. Shapovalov wave-like spacetimes. Symmetry 2020, 12, 1372. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Shirokov, I.V. Noncommutative integration method for linear partial differential equations. functional algebras and dimensional reduction. Theoret. Math. Phys. 1996, 106, 1–10. [Google Scholar] [CrossRef]
- Petrov, A.Z. Einstein Spaces; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Breev, A.; Shapovalov, A.; Gitman, D. Noncommutative eduction of Nonlinear Schredinger Equation on Lie Groups. Universe 2022, 8, 445. [Google Scholar] [CrossRef]
- Breev, A.I.; Shapovalov, A.V. Non-commutative integration of the Dirac equation in homogeneous spaces. Symmetry 2020, 12, 1867. [Google Scholar] [CrossRef]
- Breev, A.I.; Shapovalov, A.V. Yang–Mills gauge fields conserving the symmetry algebra of the Dirac equation in a homogeneous space. J. Phys. Conf. Ser. 2014, 563, 012004. [Google Scholar] [CrossRef] [Green Version]
- Magazev, A.A.; Boldyreva, M.N. Schrodinger equations in electromagnetic fields: Symmetries and noncommutative integration. Symmetry 2021, 13, 1527. [Google Scholar] [CrossRef]
- Osetrin, E.; Osetrin, K.; Filippov, A. Plane Gravitational Waves in Spatially-Homogeneous Models of type-(3.1) Stackel Spaces. Russ. Phys. J. 2019, 62, 292–301. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E.; Osetrina, E. Geodesic deviation and tidal acceleration in the gravitational wave of the Bianchi type IV universe. Eur. Phys. J. Plus. 2022, 137, 856. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E.; Osetrina, E. Gravitational wave of the Bianchi VII universe: Particle trajectories, geodesic deviation and tidal accelerations. Eur. Phys. J. C 2022, 82, 1–16. [Google Scholar] [CrossRef]
- Alam, M.N. Cemil Tunc Constructions of the optical solitons and other solitons to the conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity. J. Taibah Univ. Sci. 2020, 14, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Al-Asad, M.F.; Alam, N.; Tunç, C.; Sarker, M.S. Heat transport exploration of free convection flow inside enclosure having vertical wavy walls. J. Appl. Comput. Mech. 2021, 7, 520–527. [Google Scholar]
- Magazev, A.A. Integrating Klein-Gordon-Fock equations in an extremal electromagnetic field on Lie groups. Theor. Math. Phys. 2012, 173, 1654–1667. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, V.V. Algebra of symmetry operators for Klein-Gordon-Fock Equation. Symmetry 2021, 13, 727. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebra of the symmetry operators of the Klein-Gordon-Fock equation for the case when groups of motions G3 act transitively on null subsurfaces of spacetime. Symmetry 2022, 14, 346. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebras of integrals of motion for the Hamilton–Jacobi and Klein-Gordon-Fock equations in spacetime with a four-parameter groups of motions in the presence of an external electromagnetic field. J. Math. Phys. 2022, 63. [Google Scholar] [CrossRef]
- Odintsov, S.D. Editorial for Feature Papers 2021–2022. Symmetry 2023, 15, 32. [Google Scholar] [CrossRef]
- Obukhov, V.V. Maxwell Equations in Homogeneous Spaces for Admissible Electromagnetic Fields. Universe 2022, 8, 245. [Google Scholar] [CrossRef]
- Obukhov, V.V. Maxwell Equations in Homogeneous Spaces with Solvable Groups of Motions. Symmetry 2022, 14, 2595. [Google Scholar] [CrossRef]
- Obukhov, V.V. Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(IX). Axioms 2023, 12, 135. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Theoretical Physics, Field Theory, 7th ed.; Nauka, Chief Editorial Board for Physical and Mathematical Literature: Moscow, Russia, 1988; 512p, Volume II, ISBN 5-02-014420-7. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obukhov, V.V. Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(VIII). Symmetry 2023, 15, 648. https://doi.org/10.3390/sym15030648
Obukhov VV. Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(VIII). Symmetry. 2023; 15(3):648. https://doi.org/10.3390/sym15030648
Chicago/Turabian StyleObukhov, Valeriy V. 2023. "Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(VIII)" Symmetry 15, no. 3: 648. https://doi.org/10.3390/sym15030648
APA StyleObukhov, V. V. (2023). Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(VIII). Symmetry, 15(3), 648. https://doi.org/10.3390/sym15030648