Nonlinear Wave Propagation for a Strain Wave Equation of a Flexible Rod with Finite Deformation
Abstract
:1. Introduction
2. Bifurcation Analysis and Phase Portraits
Case | Conditions | Nature | Figure | |||
---|---|---|---|---|---|---|
1. | + | + | saddle | center | saddle | Figure 3a |
2. | − | − | center | center | saddle | Figure 3b |
3. | + | − | center | saddle | saddle | Figure 4a |
4. | − | + | saddle | center | center | Figure 4b |
3. Solutions
- (i)
- If , then the solution is solitary which corresponds to a homoclinic orbit for the system (6).
- (ii)
- If , then the solution is a kink (or anti-kink) wave that corresponds to a heteroclinic orbit for the system (6).
- (iii)
- If system (6) possesses a periodic orbit, then its corresponding solution is also periodic.
- (iv)
- If system (6) has a closed orbit in the phase portrait evolved by at least two centers and one separatrix layer, then its corresponding solution is a super periodic wave.
3.1. Periodic Solutions
- (i)
- For fixed values of in the given range, system (6) owns different families of phase orbits. An orbit belonging to these families passes through the -axis twice which proves the existence of two real roots and two complex conjugate complex roots for . This enables us to write and consequently, the interval of real propagation is . Therefore, we assume . Integration of Equation (10) gives
- (ii)
3.2. Solitary Solution
4. Graphical Representation
5. Quasi Periodic Behaviour
6. Discussion
- (a)
- It enables us to determine the interval of real wave propagation which corresponds to the interval of real motions in Hamilton systems.
- (b)
- (a)
- It gives us the required range of the parameters , and h. It also enables us to determine the type of the solution before constructing them via the type of the phase plane orbits as it is clarified in Lemma 1. By virtue of these facts, we prove the non-existence of kink or (anti-kink) wave solutions for Equation (1) as a result of system (6) has no heteroclinic phase orbit.
- (b)
- It manages us to clarify the dependence of the solutions on the initial conditions. The constant h in Equation (9) is determined from the initial conditions. Thus, for distinct values of h, or equivalently, for different initial conditions, there are different wave solutions. Let us illustrate this point by providing an example. If , then Equation (1) has either supper-periodic solution if , see theorem 2 or solitary solution if , see Theorem 6. Hence, for the same conditions on the physical parameters, the type of the solution depends on h which is always calculated from the initial conditions. Or, equivalently, the type of the solution depends on the initial conditions. Thus, we can also conclude that the bifurcation analysis enables us to find all possible wave solutions.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arshad, M.; Seadawy, A.R.; Lu, D. Elliptic function and solitary wave solutions of the higher-order nonlinear Schrödinger dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity and its stability. Eur. Phys. J. Plus 2017, 132, 371. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.; Lu, D.; Wang, J. Travelling wave solutions of Drinfel’d–Sokolov–Wilson, Whitham–Broer–Kaup and (2 + 1)-dimensional Broer–Kaup–Kupershmit equations and their applications. Chin. J. Phys. 2017, 55, 780–797. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Nuruddeen, R.; Aboodh, K.; Zakariya, Y. On the exponential solutions to three extracts from extended fifth-order KdV equation. J. King Saud Univ.-Sci. 2020, 32, 765–769. [Google Scholar] [CrossRef]
- Nasreen, N.; Seadawy, A.R.; Lu, D.; Arshad, M. Solitons and elliptic function solutions of higher-order dispersive and perturbed nonlinear Schrödinger equations with the power-law nonlinearities in non-Kerr medium. Eur. Phys. J. Plus 2019, 134, 485. [Google Scholar] [CrossRef]
- Younas, U.; Seadawy, A.R.; Younis, M.; Rizvi, S. Optical solitons and closed form solutions to the (3 + 1)-dimensional resonant Schrödinger dynamical wave equation. Int. J. Mod. Phys. B 2020, 34, 2050291. [Google Scholar] [CrossRef]
- Hossen, M.B.; Roshid, H.O.; Ali, M.Z. Multi-soliton, breathers, lumps and interaction solution to the (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation. Heliyon 2019, 5, e02548. [Google Scholar] [CrossRef] [Green Version]
- Manukure, S.; Chowdhury, A.; Zhou, Y. Complexiton solutions to the asymmetric Nizhnik–Novikov–Veselov equation. Int. J. Mod. Phys. B 2019, 33, 1950098. [Google Scholar] [CrossRef]
- Cattani, C.; Sulaiman, T.A.; Baskonus, H.M.; Bulut, H. On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems. Opt. Quantum Electron. 2018, 50, 138. [Google Scholar] [CrossRef]
- Li, Z. Diverse oscillating soliton structures for the (2 + 1)-dimensional Nizhnik–Novikov–Veselov equation. Eur. Phys. J. Plus 2020, 135, 8. [Google Scholar] [CrossRef]
- Iqbal, M.; Seadawy, A.R.; Khalil, O.H.; Lu, D. Propagation of long internal waves in density stratified ocean for the (2 + 1)-dimensional nonlinear Nizhnik-Novikov-Vesselov dynamical equation. Results Phys. 2020, 16, 102838. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Arshad, M.; Lu, D. The weakly nonlinear wave propagation of the generalized third-order nonlinear Schrödinger equation and its applications. Waves Random Complex Media 2022, 32, 819–831. [Google Scholar] [CrossRef]
- Taghizadeh, N.; Mirzazadeh, M.; Farahrooz, F. Exact solutions of the nonlinear Schrödinger equation by the first integral method. J. Math. Anal. Appl. 2011, 374, 549–553. [Google Scholar] [CrossRef] [Green Version]
- ur Rehman, H.; Awan, A.U.; Habib, A.; Gamaoun, F.; El Din, E.M.T.; Galal, A.M. Solitary wave solutions for a strain wave equation in a microstructured solid. Results Phys. 2022, 39, 105755. [Google Scholar] [CrossRef]
- Rehman, H.U.; Iqbal, I.; Subhi Aiadi, S.; Mlaiki, N.; Saleem, M.S. Soliton solutions of Klein–Fock–Gordon equation using Sardar subequation method. Mathematics 2022, 10, 3377. [Google Scholar] [CrossRef]
- Asjad, M.I.; Inc, M.; Iqbal, I. Exact solutions for new coupled Konno–Oono equation via Sardar subequation method. Opt. Quantum Electron. 2022, 54, 798. [Google Scholar]
- Asjad, M.I.; Munawar, N.; Muhammad, T.; Hamoud, A.A.; Emadifar, H.; Hamasalh, F.K.; Azizi, H.; Khademi, M. Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique. AIMS Math. 2022, 7, 11134–11149. [Google Scholar]
- Rehman, H.U.; Awan, A.U.; Allahyani, S.A.; Tag-ElDin, E.M.; Binyamin, M.A.; Yasin, S. Exact solution of paraxial wave dynamical model with Kerr Media by using ϕ6 model expansion technique. Results Phys. 2022, 42, 105975. [Google Scholar] [CrossRef]
- El-Ganaini, S. Solitons and other solutions to a new coupled nonlinear Schrodinger type equation. J. Egypt. Math. Soc. 2017, 25, 19–27. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Arshad, M.; Lu, D. Dispersive optical solitary wave solutions of strain wave equation in micro-structured solids and its applications. Phys. A Stat. Mech. Its Appl. 2020, 540, 123122. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Wazwaz, A.M. New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. Eur. Phys. J. Plus 2020, 135, 870. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Ali, A.; Baleanu, D.; Althobaiti, S.; Alkafafy, M. Dispersive analytical wave solutions of the strain waves equation in microstructured solids and Lax’fifth-order dynamical systems. Phys. Scr. 2021, 96, 105203. [Google Scholar] [CrossRef]
- Jadaun, V.; Kumar, S. Lie symmetry analysis and invariant solutions of (3 + 1)(3 + 1)-dimensional Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 2018, 93, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.M.; Tian, S.F.; Xu, M.J.; Zhang, T.T. On Lie symmetries, optimal systems and explicit solutions to the Kudryashov–Sinelshchikov equation. Appl. Math. Comput. 2016, 275, 345–352. [Google Scholar] [CrossRef]
- El-Dessoky, M.; Elmandouh, A. Qualitative analysis and wave propagation for Konopelchenko-Dubrovsky equation. Alex. Eng. J. 2023, 67, 525–535. [Google Scholar] [CrossRef]
- Adeyemo, O.D.; Khalique, C.M.; Gasimov, Y.S.; Villecco, F. Variational and non-variational approaches with Lie algebra of a generalized (3 + 1)-dimensional nonlinear potential Yu-Toda-Sasa-Fukuyama equation in Engineering and Physics. Alex. Eng. J. 2023, 63, 17–43. [Google Scholar] [CrossRef]
- Wang, K. Exact travelling wave solution for the local fractional Camassa-Holm-Kadomtsev-Petviashvili equation. Alex. Eng. J. 2023, 63, 371–376. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Zaghrout, A.A.; Ahmed, H.M. Travelling wave solutions for the doubly dispersive equation using improved modified extended tanh-function method. Alex. Eng. J. 2022, 61, 7987–7994. [Google Scholar] [CrossRef]
- Ali, K.K.; Osman, M.; Abdel-Aty, M. New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method. Alex. Eng. J. 2020, 59, 1191–1196. [Google Scholar] [CrossRef]
- Rehman, H.U.; Awan, A.U.; Tag-ElDin, E.M.; Alhazmi, S.E.; Yassen, M.F.; Haider, R. Extended hyperbolic function method for the (2 + 1)-dimensional nonlinear soliton equation. Results Phys. 2022, 40, 105802. [Google Scholar] [CrossRef]
- Rehman, H.; Seadawy, A.R.; Younis, M.; Rizvi, S.; Anwar, I.; Baber, M.; Althobaiti, A. Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3 + 1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation in plasma physics. Results Phys. 2022, 33, 105069. [Google Scholar] [CrossRef]
- Nemytskii, V.V. Qualitative Theory of Differential Equations; Princeton University Press: Princeton, NJ, USA, 2015; Volume 2083. [Google Scholar]
- Elbrolosy, M.; Elmandouh, A. Bifurcation and new traveling wave solutions for (2 + 1)-dimensional nonlinear Nizhnik–Novikov–Veselov dynamical equation. Eur. Phys. J. Plus 2020, 135, 533. [Google Scholar] [CrossRef]
- Elmandouh, A. Bifurcation and new traveling wave solutions for the 2D Ginzburg–Landau equation. Eur. Phys. J. Plus 2020, 135, 648. [Google Scholar] [CrossRef]
- Elmandouha, A.; Ibrahim, A. Bifurcation and travelling wave solutions for a (2 + 1)-dimensional KdV equation. J. Taibah Univ. Sci. 2020, 14, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Al Nuwairan, M. The exact solutions of the conformable time fractional version of the generalized Pochhammer–Chree equation. Math. Sci. 2022, 1–12. [Google Scholar] [CrossRef]
- Karakoc, S.B.G.; Saha, A.; Sucu, D.Y. A collocation algorithm based on septic B-splines and bifurcation of traveling waves for Sawada–Kotera equation. Math. Comput. Simul. 2023, 203, 12–27. [Google Scholar] [CrossRef]
- Pradhan, B.; Saha, A. Coexistence of Chaotic, Quasiperiodic and Multiperiodic Features in Quantum Plasma. In Proceedings of the Seventh International Conference on Mathematics and Computing—ICMC, Online, 2–5 March 2021; pp. 903–914. [Google Scholar]
- Saha, A.; Pradhan, B.; Natiq, H. Multiperiodic and chaotic wave phenomena of collective ion dynamics under KP-type equation in a magnetised nonextensive plasma. Phys. Scr. 2022, 97, 095604. [Google Scholar] [CrossRef]
- Prasad, P.K.; Mandal, U.K.; Das, A.; Saha, A. Phase plane analysis and integrability via Bäcklund transformation of nucleus-acoustic waves in white dwarf. Chin. J. Phys. 2021, 73, 534–545. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Al-Askar, F.M.; Cesarano, C.; Botmart, T.; El-Morshedy, M. Wiener process effects on the solutions of the fractional (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation. Mathematics 2022, 10, 2043. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Al-Askar, F.M.; Cesarano, C.; El-Morshedy, M. The Optical Solutions of the Stochastic Fractional Kundu–Mukherjee–Naskar Model by Two Different Methods. Mathematics 2022, 10, 1465. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Alshammari, M.; Cesarano, C.; Albadrani, S.; El-Morshedy, M. Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials. Mathematics 2022, 10, 1458. [Google Scholar] [CrossRef]
- Elbrolosy, M.; Elmandouh, A. Dynamical behaviour of nondissipative double dispersive microstrain wave in the microstructured solids. Eur. Phys. J. Plus 2021, 136, 955. [Google Scholar] [CrossRef]
- Elmandouh, A. Integrability, qualitative analysis and the dynamics of wave solutions for Biswas–Milovic equation. Eur. Phys. J. Plus 2021, 136, 638. [Google Scholar] [CrossRef]
- Elbrolosy, M. Qualitative analysis and new soliton solutions for the coupled nonlinear Schrödinger type equations. Phys. Scr. 2021, 96, 125275. [Google Scholar] [CrossRef]
- Elbrolosy, M.; Elmandouh, A.; Elmandouh, A. Construction of new traveling wave solutions for the (2 + 1) dimensional extended Kadomtsev-Petviashvili equation. J. Appl. Anal. Comput. 2022, 12, 533–550. [Google Scholar] [CrossRef]
- Elmandouh, A.A.; Elbrolosy, M.E. New traveling wave solutions for Gilson–Pickering equation in plasma via bifurcation analysis and direct method. Math. Methods Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Elbrolosy, M.; Elmandouh, A. Dynamical behaviour of conformable time-fractional coupled Konno-Oono equation in magnetic field. Math. Probl. Eng. 2022, 2022, 3157217. [Google Scholar] [CrossRef]
- Elmandouh, A.; Elbrolosy, M. Integrability, variational principal, bifurcation and new wave solutions for Ivancevic option pricing model. J. Math. 2022, 2, 3. [Google Scholar]
- Liu, Z.F.; Zhang, S.Y. Solitary waves in finite deformation elastic circular rod. Appl. Math. Mech. 2006, 27, 1255–1260. [Google Scholar] [CrossRef]
- Liu, S.K.; Liu, S. Nonlinear Equations in Physics; Peking University Press: Beijing, China, 2000. [Google Scholar]
- Porubov, A.V.; Velarde, M.G. On nonlinear waves in an elastic solid. Comptes Rendus Acad. Sci.-Ser. IIB-Mech. 2000, 328, 165–170. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, J.; Zhang, N. The dynamics behaviors and wave properties of finite deformation elastic rods with viscous or geometrical-dispersive effects. In Proceedings of the Forth International Conference on Nonlinear Mechanics—ICNM-IV, Shanghai, China, 14–17 August 2002; pp. 728–732. [Google Scholar]
- Fu, Z.; Liu, S.; Liu, S. New transformations and new approach to find exact solutions to nonlinear equations. Phys. Lett. A 2002, 299, 507–512. [Google Scholar] [CrossRef]
- Goldstein, H. Classical Mechanics; Addison-Wesley Series in Physics; Addison-Wesley: Boston, MA, USA, 1980. [Google Scholar]
- Saha, A.; Banerjee, S. Dynamical Systems and Nonlinear Waves in Plasmas; CRC Press: Boca Raton, FL, USA, 2021; pp. x+207. [Google Scholar]
- Yang, L.; Hou, X.; Zeng, Z. A complete discrimination system for polynomials. Sci. China Ser. E 1996, 39, 628–646. [Google Scholar]
- Meng, Q.; He, B.; Long, Y.; Rui, W. Bifurcations of travelling wave solutions for a general Sine–Gordon equation. Chaos Solitons Fractals 2006, 29, 483–489. [Google Scholar] [CrossRef]
- Bin, H.; Jibin, L.; Yao, L.; Weiguo, R. Bifurcations of travelling wave solutions for a variant of Camassa–Holm equation. Nonlinear Anal. Real World Appl. 2008, 9, 222–232. [Google Scholar] [CrossRef]
- Byrd, P.F.; Friedman, M.D. Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed., revised; Die Grundlehren der Mathematischen Wissenschaften, Band 67; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1971; pp. xvi+358. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljuaidan, A.; Elbrolosy, M.; Elmandouh, A. Nonlinear Wave Propagation for a Strain Wave Equation of a Flexible Rod with Finite Deformation. Symmetry 2023, 15, 650. https://doi.org/10.3390/sym15030650
Aljuaidan A, Elbrolosy M, Elmandouh A. Nonlinear Wave Propagation for a Strain Wave Equation of a Flexible Rod with Finite Deformation. Symmetry. 2023; 15(3):650. https://doi.org/10.3390/sym15030650
Chicago/Turabian StyleAljuaidan, Aqilah, Mamdouh Elbrolosy, and Adel Elmandouh. 2023. "Nonlinear Wave Propagation for a Strain Wave Equation of a Flexible Rod with Finite Deformation" Symmetry 15, no. 3: 650. https://doi.org/10.3390/sym15030650
APA StyleAljuaidan, A., Elbrolosy, M., & Elmandouh, A. (2023). Nonlinear Wave Propagation for a Strain Wave Equation of a Flexible Rod with Finite Deformation. Symmetry, 15(3), 650. https://doi.org/10.3390/sym15030650