Fixed Point Approaches for Multi-Valued Prešić Multi-Step Iterative Mappings with Applications
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Applications
4.1. Some Contributions of Integral Type
4.2. Solve a Three Point Boundary Value Problem
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed point. Proc. Am. Math. Soc. 1973, 38, 111–118. [Google Scholar] [CrossRef]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Rhoades, B.E. Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47, 2683–2693. [Google Scholar] [CrossRef]
- Berinde, V.; Pǎcurar, M. Fixed points theorems for unsaturated and saturated classes of contractive mappings in Banach spaces. Symmetry 2021, 13, 713. [Google Scholar] [CrossRef]
- Dutta, P.N.; Choudhury, B.S. A generalization of contraction principle in metric spaces. Fixed Point Theory Appl. 2008, 2008, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Saleem, N.; Liu, X.; Ansari, A.H.; Zhou, M. Fixed Point of (α,β)-Admissible Generalized Geraghty F-Contraction with Application. Symmetry 2016, 14, 1016. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Ineq. Appl. 2014, 38, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pant, R.; Patel, P.; Shukla, R.; De la Sen, M. Fixed point theorems for nonexpansive type mappings in Banach spaces. Symmetry 2021, 13, 585. [Google Scholar] [CrossRef]
- Prešić, S.B. Sur une classe d’inéquations aux différences finies et sur la convergence de certaines suites. Publ. Inst. Math. 1965, 5, 75–78. [Google Scholar]
- George, R.; Reshma, K.P.; Rajagopalan, R. A generalised fixed point theorem of Presic type in cone metric spaces and application to Markov process. Fixed Point Theory Appl. 2011, 2011, 85. [Google Scholar] [CrossRef] [Green Version]
- Ćirić, L.B.; Prešić, S.B. On Prešić type generalization of the Banach contraction mapping principle. Acta Math. Univ. Comen. 2007, 76, 143–147. [Google Scholar]
- Altun, I.; Qasim, M.; Olgun, M. A new result of Prešić type theorems with applications to second order boundary value problems. Filomat 2021, 35, 2257–2266. [Google Scholar] [CrossRef]
- Abbas, M.; Illic, D.; Nazir, T. Iterative approximation of fixed points of generalized weak Prešić type k-step iterative method for a class of operators. Filomat 2015, 29, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Z. A Prešić type contractive condition and its applications. Nonlinar Anal. 2009, 71, 2012–2017. [Google Scholar] [CrossRef]
- Pǎcurar, M. A multi-step iterative method for approximating fixed points of Prešić-Kannan operators. Acta Math. Univ. Comen. 2010, 79, 77–88. [Google Scholar]
- Berinde, V.; Pǎcurar, M. An iterative method for approximating fixed points of Prešić nonexpansive mappings. Rev. Anal. Numer. Theor. Approx. 2009, 38, 144–153. [Google Scholar]
- Berinde, V.; Pǎcurar, M. Two elementary applications of some Prešić type fixed point theorems. Creat. Math. Inform. 2011, 20, 32–42. [Google Scholar] [CrossRef]
- Khan, M.S.; Berzig, M.; Samet, B. Some convergence results for iterative sequences of Prešić type and applications. Adv. Differ. Equ. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.P.R.; Sadik, S.K.; Manro, S. Prešić type fixed point theorem for four maps in MSs. J. Math. 2016, 2016, 2121906. [Google Scholar] [CrossRef]
- Hammad, H.A.; De la Sen, M. Tripled fixed point techniques for solving system of tripled fractional differential equations. AIMS Math. 2020, 6, 2330–2343. [Google Scholar] [CrossRef]
- Hammad, H.A.; Aydi, H.; De la Sen, M. Solutions of fractional differential type equations by fixed point techniques for multi-valued contractions. Complexity 2021, 2021, 5730853. [Google Scholar] [CrossRef]
- Fabiano, N.; Nikolič, N.; Thenmozhi, S.; Radenović, S.; Čıtaković, N. Tenth order boundary value problem solution existence by fixed point theorem. J. Inequal. Appl. 2020, 2020, 166. [Google Scholar] [CrossRef]
- Afshari, H.; Kalantari, S.; Karapınar, E. Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, 2015, 286. [Google Scholar]
- Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Cirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70, 4341–4349. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C. Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 4260–4268. [Google Scholar] [CrossRef]
- Hammad, H.A.; Albaqeri, D.M.; Rashwan, R.A. Coupled coincidence point technique and its application for solving nonlinear integral equations in RPOCbML spaces. J. Egypt. Math. Soc. 2020, 28, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hammad, H.A.; De la Sen, M.; Aydi, H. Analytical solution for differential and nonlinear integral equations via Fϖe-Suzuki contractions in modified ϖe-metric-like spaces. J. Funct. Spaces 2021, 2021, 6128586. [Google Scholar]
- Nadler, S.B., Jr. Multivalued contraction mapping. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, B.S.; Metiya, N.; Bandyopadhyay, C. Fixed points of multivalued α-admissible mappings and stability of fixed point sets in metric spaces. Rend. Circ. Mat. Palermo 2015, 64, 43–55. [Google Scholar] [CrossRef]
- Latif, A.; Beg, I. Geometric fixed points for single and multivalued mappings. Demonstr. Math. 1997, 30, 791–800. [Google Scholar] [CrossRef]
- Rasham, T.; Shoaib, A.; Hussain, N.; Alamri, B.A.; Arshad, M. Multivalued fixed point results in dislocated b-metric spaces with application to the system of nonlinear integral equations. Symmetry 2019, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Anjum, R.; Berinde, V. Enriched Multivalued Contractions with Applications to Differential Inclusions and Dynamic Programming. Symmetry 2021, 13, 1350. [Google Scholar] [CrossRef]
- Shukla, S.; Radojević, S.; Veljković, Z.A.; Radenović, S. Some coincidence and common fixed point theorems for ordered Prešić-Reich type contractions. J. Inequal. Appl. 2013, 2013, 520. [Google Scholar] [CrossRef] [Green Version]
- Latif, A.; Nazir, T.; Abbas, M. Fixed Point Results for Multivalued Prešić Type Weakly Contractive Mappings. Mathematics 2019, 7, 601. [Google Scholar] [CrossRef] [Green Version]
- Nashine, H.K.; Samet, B. Fixed point results for mappings satisfying (ψ,ϕ)-weakly contractive condition in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 2201–2209. [Google Scholar] [CrossRef]
- Kythe, P.K. Green’s Functions and Linear Differential Equations; Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Duffy, D.G. Green’s Functions with Applications; Chapman & Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Cabada, A.; Cid, J.Á.; Máquez-Villamarín, B. Computation of Green’s functions for boundary value problems with Mathematica. Appl. Math. Comput. 2012, 219, 1919–1936. [Google Scholar] [CrossRef]
- Zhao, Z. Solutions and Green’s functions for some linear second-order three-point boundary value problems. Comp. Math. Appl. 2008, 56, 104–113. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, A.; Abbas, M.; Hammad, H.A.; De la Sen, M. Fixed Point Approaches for Multi-Valued Prešić Multi-Step Iterative Mappings with Applications. Symmetry 2023, 15, 686. https://doi.org/10.3390/sym15030686
Raza A, Abbas M, Hammad HA, De la Sen M. Fixed Point Approaches for Multi-Valued Prešić Multi-Step Iterative Mappings with Applications. Symmetry. 2023; 15(3):686. https://doi.org/10.3390/sym15030686
Chicago/Turabian StyleRaza, Ali, Mujahid Abbas, Hasanen A. Hammad, and Manuel De la Sen. 2023. "Fixed Point Approaches for Multi-Valued Prešić Multi-Step Iterative Mappings with Applications" Symmetry 15, no. 3: 686. https://doi.org/10.3390/sym15030686
APA StyleRaza, A., Abbas, M., Hammad, H. A., & De la Sen, M. (2023). Fixed Point Approaches for Multi-Valued Prešić Multi-Step Iterative Mappings with Applications. Symmetry, 15(3), 686. https://doi.org/10.3390/sym15030686