Gravitational Acceleration Test Results According to Functional Movement Screen and Morphological Symmetry Results of Air Force Cadets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Body Composition Measurement
2.3. G-Test
2.4. FMS Measurements
2.5. Leg Length Measurements
2.6. Statistical Analysis
3. Results
3.1. G-Test Results by FMS Score
3.2. G-Test Results According to LLI
3.3. Comparison of LLI According to G-Test Passed and Failed Groups
3.4. Coefficients for Pearson’s Correlation between FMS Score and Leg Length
4. Discussion
5. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shin, S.H. A correlation pilot-study of F-15/16 pilots’ ACTN-3, G-tolerance, and body compositions. Exerc. Sci. 2018, 27, 80–88. [Google Scholar] [CrossRef]
- Gore, R.K.; Webb, T.S.; Hermes, E.D. Fatigue and stimulant use in military fighter aircrew during combat operations. Aviat. Space Environ. Med. 2010, 81, 719–727. [Google Scholar] [CrossRef]
- Shiri, R.; Frilander, H.; Sainio, M.; Karvala, K.; Sovelius, R.; Vehmas, T.; Viikari-Juntura, E. Cervical and lumbar pain and radiological degeneration among fighter pilots: A systematic review and meta-analysis. Occup. Environ. Med. 2015, 72, 145–150. [Google Scholar] [CrossRef]
- Chumbley, E.M.; Stolfi, A.; McEachen, J.C. Risk factors for cervical pain in F-15C pilots. Aerosp. Med. Hum. Perform. 2017, 88, 1000–1007. [Google Scholar] [CrossRef]
- Walsh, M.; Connolly, P.; Jenkinson, A.; O’Brien, T. Leg length discrepancy—An experimental study of compensatory changes in three dimensions using gait analysis. Gait. Posture. 2000, 12, 156–161. [Google Scholar] [CrossRef]
- Dae-Yeon Yoon, O.M.D.; Jin-Seo Choi, O.M.D.; Su-Hyun Jeong, O.M.D.; Soon-Joong Kim, O.M.D. The analysis of erector spinae muscle on difference of functional leg length inequality—Through meridian electromyography. J. Oriental. Rehabil. Med. 2011, 21, 13–20. [Google Scholar]
- Tippett, S.R. Lower extremity strength and active range of motion in college baseball pitchers: A comparison between stance leg and kick leg. J. Orthop. Sports Phys. Ther. 1986, 8, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Minthorn, L.M.; Fayson, S.D.; Stobierski, L.M.; Welch, C.E.; Anderson, B.E. The Functional Movement Screen’s ability to detect changes in movement patterns after a training intervention. J. Sport Rehabil. 2015, 24, 322–326. [Google Scholar] [CrossRef]
- Gulgin, H.; Hoogenboom, B. The functional movement screening (FMS)™: An inter-rater reliability study between raters of varied experience. Int. J. Sports Phys. Ther. 2014, 9, 14–20. [Google Scholar]
- Fallahasady, E.; Rahmanloo, N.; Seidi, F.; Rajabi, R.; Bayattork, M. The relationship between core muscle endurance and functional movement screen scores in females with lumbar hyperlordosis: A cross-sectional study. BMC Sports Sci. Med. Rehabil. 2020, 14, 182. [Google Scholar] [CrossRef]
- Cook, G.; Burton, L.; Hoogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function–Part 1. N. Am. J. Sports Phys. Ther. 2006, 1, 62–72. [Google Scholar]
- Cook, G.; Burton, L.; Hoogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function–Part 2. N. Am. J. Sports Phys. Ther. 2006, 1, 132–139. [Google Scholar]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. A preliminary investigation into the relationship between functional movement screen scores and athletic physical performance in female team sport athletes. Biol. Sport 2015, 32, 41–51. [Google Scholar] [CrossRef]
- Bardenett, S.M.; Micca, J.J.; DeNoyelles, J.T.; Miller, S.D.; Jenk, D.T.; Brooks, G.S. Functional movement screen normative values and validity in high school athletes: Can the FMS™ be used as a predictor of injury? Int. J. Sports Phys. Ther. 2015, 10, 303–308. [Google Scholar]
- Kiesel, K.; Plisky, P.; Butler, R. Functional movement test scores improve following a standardized off-season intervention program in professional football players. Scand. J. Med. Sci. Sports 2016, 21, 287–292. [Google Scholar] [CrossRef]
- Chorba, R.S.; Chorba, D.J.; Bouillon, L.E.; Overmyer, C.A.; Landis, J.A. Use of a functional movement screening tool to determine injury risk in female collegiate athletes. N. Am. J. Sports Phys Ther. 2010, 5, 47–54. [Google Scholar]
- Lee, M.R.; Kim, J.H.; Lee, M.R.; Kim, J.H. The effects of self-myofascial release before weight training on functional movement and delayed-onset muscle soreness. Exerc Sci. 2022, 31, 88–97. [Google Scholar] [CrossRef]
- Akuthota, V.; Ferreiro, A.; Moore, T.; Fredericson, M. Core stability exercise principles. Curr. Sports Med. Rep. 2008, 7, 39–44. [Google Scholar] [CrossRef]
- Kim, I.K.; Jeong, D.H.; Sung, J.Y.; Kim, K.S. Analysis of G-test results according to fatigue, physical fitness and body composition of Air Force cadets using smart watches. Exerc. Sci. 2022, 31, 98–104. [Google Scholar] [CrossRef]
- Hewett, T.E.; Ford, K.R.; Myer, G.D. Anterior cruciate ligament injuries in female athletes: Part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. Am. J. Sports Med. 2006, 34, 490–498. [Google Scholar] [CrossRef]
- Cuchna, J.W.; Hoch, M.C.; Hoch, J.M. The interrater and intrarater reliability of the functional movement screen: A systematic review with meta-analysis. Phys. Ther. Sport 2016, 19, 57–65. [Google Scholar] [CrossRef] [PubMed]
Factors | GP (n = 40) | GF (n = 32) |
---|---|---|
Height (cm) | 173.47 ± 5.02 | 172.54 ± 8.57 |
Body weight (kg) | 72.91 ± 7.71 | 69.05 ± 8.94 |
Skeletal muscle mass (kg) | 34.37 ± 5.48 | 31.93 ± 5.46 |
Fat mass (kg) | 12.47 ± 2.81 | 12.43 ± 2.32 |
Body fat (%) | 17.39 ± 5.00 | 18.27 ± 4.15 |
Body mass index (kg/m2) | 24.17 ± 1.54 | 23.11 ± 1.53 |
Factor | GP (n = 40) | GF (n = 32) | t | p | |
---|---|---|---|---|---|
Deep squat | Total | 2.05 ± 0.60 | 1.94 ± 0.062 | 0.782 | 0.782 |
Hurdle step | Total | 1.60 ± 0.59 | 1.50 ± 0.62 | 0.697 | 0.686 |
Right | 1.73 ± 0.72 | 1.22 ± 0.42 *** | 0.354 | 0.000 | |
Left | 1.75 ± 0.71 | 1.31 ± 0.59 | 2.800 | 0.126 | |
Inline lunge | Total | 1.65 ± 0.58 | 1.50 ± 0.51 | 1.152 | 0.642 |
Right | 1.68 ± 0.57 | 1.69 ± 0.47 | −0.099 | 0.153 | |
Left | 1.73 ± 0.45 | 1.50 ± 0.51 ** | 1.986 | 0.006 | |
Shoulder mobility | Total | 1.98 ± 0.58 ** | 2.41 ± 0.67 | −2.945 | 0.008 |
Right | 1.88 ± 0.56 | 2.41 ± 0.67 | −3.669 | 0.019 | |
Left | 2.03 ± 0.62 | 2.41 ± 0.67 | −2.511 | 0.036 | |
Active straight leg raise | Total | 1.84± 0.59 | 1.63 ± 0.51 * | −1.661 | 0.022 |
Right | 1.65 ± 0.55 | 1.63 ± 0.49 | −1.402 | 0.186 | |
Left | 1.88 ± 0.42 | 1.63 ± 0.59 *** | −1.270 | 0.001 | |
Trunk stability push-up | Total | 2.08 ± 0.57 | 1.97 ± 0.18 *** | 1.011 | 0.000 |
Rotary stability | Total | 2.30 ± 0.46 | 2.31 ± 0.47 | −0.113 | 0.823 |
Right | 2.30 ± 0.46 | 2.31 ± 0.47 | −0.113 | 0.823 | |
Left | 2.23 ± 0.66 | 2.31 ± 0.47 | −0.632 | 0.114 | |
Total score | 13.29 ± 2.12 | 13.47 ± 2.11 | −0.237 | 0.962 |
Factor | GP (n 40) | GF (n 32) | t | p | |
---|---|---|---|---|---|
ASIS-MM | Right | 89.36 ± 3.53 | 89.70 ± 5.16 * | −0.339 | 0.034 |
Left | 89.48 ± 3.10 | 90.29 ± 4.93 * | −0.854 | 0.014 | |
ASIS-HF | Right | 55.35 ± 6.58 | 53.78 ± 3.46 | 1.220 | 0.743 |
Left | 55.49 ± 6.41 | 54.29 ± 3.03 | 0.967 | 0.497 | |
ASIS-G | Right | 96.36 ± 3.58 | 96.47 ± 5.46 ** | −0.099 | 0.010 |
Left | 96.58 ± 3.63 | 96.85 ± 5.80 ** | −0.236 | 0.006 |
Factor | Right | Left | t | p |
---|---|---|---|---|
ASIS-MM | 89.36 ± 3.53 | 89.48 ± 3.10 | 0.586 | 0.561 |
ASIS-HF | 55.35 ± 6.58 | 55.49 ± 6.41 | 1.077 | 0.288 |
ASIS-G | 96.36 ± 3.58 | 96.58 ± 3.63 | 1.010 | 0.319 |
Factor | Right | Left | t | p |
---|---|---|---|---|
ASIS-MM | 89.70 ± 5.16 | 90.29 ± 4.93 *** | 3.848 | 0.001 |
ASIS-HF | 53.78 ± 3.46 | 54.29 ± 3.03 ** | 3.291 | 0.002 |
ASIS-G | 96.47 ± 5.46 | 96.85 ± 5.80 | 1.883 | 0.069 |
Factor | DS | HS | IL | SM | ASLR | TSPU | RS | TS | FLLR | FLLL | AHLLR | AHLLL | AGLLR | AGLLL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DS | ||||||||||||||
HS | 0.052 ** | |||||||||||||
IL | 0.296 * | 0.665 ** | ||||||||||||
SM | 0.179 | −0.204 | −0.157 | |||||||||||
ASLR | 0.497 ** | 0.587 ** | 0.440 ** | 0.283 * | ||||||||||
TSPU | 0.420 ** | 0.258 * | 0.279 * | −0.114 | 0.314 ** | |||||||||
RS | −0.201 | −0.314 ** | −0.101 | 0.249 * | −0.156 | −0.453 ** | ||||||||
TS | 0.753 ** | 0.700 ** | 0.635 ** | 0.363 ** | 0.788 | 0.442 ** | −0.027 | |||||||
FLLR | −0.165 | −0.111 | 0.023 | −0.332 ** | −0.241 * | 0.042 | −0.173 | −0.265 * | ||||||
FLLL | −0.183 | −0.042 | 0.380 | −0.348 ** | −0.187 | 0.036 | −0.149 | −0.218 | 0.962 ** | |||||
AHLLR | −0.108 | 0.136 | −0.116 | −0.234 * | −0.024 | −0.018 | −0.224 | −0.155 | 0.217 | 0.311 ** | ||||
AHLLL | −0.060 | 0.134 | −0.144 | −0.191 | 0.723 | 0.013 | −0.243 * | −0.118 | 0.173 | 0.255 * | 0.988 ** | |||
AGLLR | −0.238 ** | 0.080 | 0.136 | −0.344 ** | −0.124 | 0.026 | −0.203 | −0.184 | 0.896 ** | 0.898 ** | 0.367 ** | 0.428 ** | ||
AGLLL | −0.201 | 0.060 | 0.137 | −0.366 ** | −0.121 | 0.074 | −0.312 ** | −0.193 | 0.915 ** | 0.902 ** | 0.361 ** | 0.409 ** | 0.936 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, D.-H.; Lee, D.-R.; Lee, K.-L.; Sung, J.-Y. Gravitational Acceleration Test Results According to Functional Movement Screen and Morphological Symmetry Results of Air Force Cadets. Symmetry 2023, 15, 804. https://doi.org/10.3390/sym15040804
Jeong D-H, Lee D-R, Lee K-L, Sung J-Y. Gravitational Acceleration Test Results According to Functional Movement Screen and Morphological Symmetry Results of Air Force Cadets. Symmetry. 2023; 15(4):804. https://doi.org/10.3390/sym15040804
Chicago/Turabian StyleJeong, Deok-Hwa, Dong-Ryul Lee, Kyu-Lim Lee, and Jun-Young Sung. 2023. "Gravitational Acceleration Test Results According to Functional Movement Screen and Morphological Symmetry Results of Air Force Cadets" Symmetry 15, no. 4: 804. https://doi.org/10.3390/sym15040804
APA StyleJeong, D. -H., Lee, D. -R., Lee, K. -L., & Sung, J. -Y. (2023). Gravitational Acceleration Test Results According to Functional Movement Screen and Morphological Symmetry Results of Air Force Cadets. Symmetry, 15(4), 804. https://doi.org/10.3390/sym15040804