Towards a Dynamic Compartmental Model of a Lamellar Settler
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flow Field Calculation
2.2. Coherent Structure Detection and Compartmentalization
2.3. Mesh Independence Test and Validity of the Model
2.4. Model Setup
3. Results and Discussion
3.1. Flow Field and Mass Transport Calculation and Validation
3.2. Coherent Structure Detection
3.3. Compartmental Model and Its Application
3.4. Dynamic Behavior of the Compartments
4. Discussion
5. Conclusions
- Based on a numerical tracer experiment, the tracer was already detectable at around 40% of the average residence time at the outlet, while more than 2.5 times the average residence time was required for 10% of the tracer to exit. The latter may indicate the presence of dead zones, while the former may indicate hydraulic short circuits.
- The discrete phase model approximation provided acceptable results compared to the Eulerian multiphase model and the measurement results.
- The consequence of the topological analysis was that two main flow zones formed in the lamella settler, with significant internal recirculation in the first zone. The boundary between the two zones varied with different loads, and the recirculation zone became more extensive with increasing loads.
- Due to the recirculation eddies that formed in the reactor tanks, the actual hydraulic load could be much higher (from 1.5 to 4.5 times) than that in individual zones; therefore the design HLR, which referred to the entire tank, did not take into account the local flow pattern.
- Depending on the load, the extent of the recirculation zone changed in a stepwise manner until the recirculation zone became so extensive that it included all the lamellae except the last one (from approximately 35 to 75% of the total volume).
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chai, L.; Li, Q.; Wang, Q.; Yan, X. Solid-liquid separation: An emerging issue in heavy metal wastewater treatment. Environ. Sci. Pollut. Res. 2018, 25, 17250–17267. [Google Scholar] [CrossRef]
- Mihopulos, J.; Hahn, H.H. Effectivity of Liquid-Solid Separation as a Function of Apparatus Characteristics and Wastewater Quality. In Chemical Water and Wastewater Treatment II; Klute, R., Hahn, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Dufresne, M.; Vazquez, J.; Terfous, A.; Ghenaim, A.; Poulet, J.B. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Comput. Fluids 2009, 38, 1042–1049. [Google Scholar] [CrossRef]
- Spicer, P.T.; Pratsinis, S.E. Shear-induced flocculation: The evolution of floc structure and the shape of the size distribution at steady state. Water Res. 1996, 30, 1049–1056. [Google Scholar] [CrossRef]
- Chouippe, A.; Uhlmann, M. On the influence of forced homogeneous-isotropic turbulence on the settling and clustering of finite-size particles. Acta Mech. 2019, 230, 387–412. [Google Scholar] [CrossRef] [Green Version]
- Raeesh, M.; Devi, T.T.; Hirom, K. Recent Developments on Application of Different Turbulence and Multiphase Models in Sedimentation Tank Modeling—A Review. Water Air Soil Pollut. 2023, 234, 5. [Google Scholar] [CrossRef]
- Voermans, J.J.; Ghisalberti, M.; Ivey, G.N. The variation of flow and turbulence across the sediment–water interface. J. Fluid Mech. 2017, 824, 413–437. [Google Scholar] [CrossRef] [Green Version]
- Kreissl, S.; Pingen, G.; Maute, K. Topology optimization for unsteady flow. Int. J. Numer. Methods Eng. 2011, 87, 1229–1253. [Google Scholar] [CrossRef]
- Smith, B.T.; Halperin, J.; Darzins, A.; Davis, R.H. Enhanced sediment flow in inclined settlers via surface modification or applied vibration for harvesting microalgae. Algal Res. 2013, 2, 369–377. [Google Scholar] [CrossRef]
- Hurst, M.; Weber-Shirk, M.; Lion, L.W. Parameters affecting steady-state floc blanket performance. J. Water Supply: Res. Technol.—AQUA 2010, 59, 312–323. [Google Scholar] [CrossRef]
- Robescu, D.; Mandiş, C.; Robescu, D. Design lamellar secondary settling tank using numerical modeling. UPB Sci. Bull. Ser. D 2010, 72, 211–216. [Google Scholar]
- Vitasovic, Z.C.; Zhou, S.; McCorquodale, J.A.; Lingren, K. Secondary clarifier analysis using data from the Clarifier Research Technical Committee protocol. Water Environ. Res. 1997, 69, 999–1007. [Google Scholar] [CrossRef]
- Tarpagkou, R.; Pantokratoras, A. The influence of lamellar settler in sedimentation tanks for potable water treatment—A computational fluid dynamic study. Powder Technol. 2014, 268, 139–149. [Google Scholar] [CrossRef]
- Hirom, K.; Devi, T.T. Application of computational fluid dynamics in sedimentation tank design and its recent developments: A review. Water Air Soil. Pollut. 2022, 233, 22. [Google Scholar] [CrossRef]
- Haag, J.; Gentric, C.; Lemaitre, C.; Leclerc, J.P. Modelling of chemical reactors: From systemic approach to compartmental modelling. Int. J. Chem. React. Eng. 2018, 16, 1–22. [Google Scholar] [CrossRef]
- Fiedler, H.E. Coherent structures in turbulent flows. Prog. Aerosp. Sci. 1988, 25, 231–269. [Google Scholar] [CrossRef]
- Balachandar, S. Turbulence, coherent structures, dynamical systems and symmetry. AIAA J. 1998, 36, 496. [Google Scholar] [CrossRef]
- Gurka, R.; Liberzon, A.; Hetsroni, G. POD of vorticity fields: A method for spatial characterization of coherent structures. Int. J. Heat Fluid Flow 2006, 27, 416–423. [Google Scholar] [CrossRef]
- Epps, B. Review of vortex identification methods. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. AIAA 2017-0989. [Google Scholar] [CrossRef]
- Calaf, M.; Hultmark, M.; Oldroyd, H.J.; Simeonov, V.; Parlange, M.B. Coherent structures and the k−1 spectral behaviour. Phys. Fluids 2013, 25, 125107. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Machiraju, R.; Thompson, D. Detection and visualization of vortices. In The Visualization Handbook; Elsevier: Amsterdam, The Netherlands, 2005; pp. 295–309. [Google Scholar]
- Deng, L.; Wang, Y.; Liu, Y.; Wang, F.; Li, S.; Liu, J. A CNN-based vortex identification method. J. Vis. 2019, 22, 65–78. [Google Scholar] [CrossRef]
- Hellsten, A. Some improvements in Menter’s k-omega SST turbulence model. In Proceedings of the 29th AIAA, Fluid Dynamics Conference, Albuquerque, NM, USA, 15–18 June 1998; p. 2554. [Google Scholar]
- Ferziger, J.H.; Peric, M. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-540-42074-3. [Google Scholar]
- Salamon, P.; Fernàndez-Garcia, D.; Gómez-Hernández, J.J. A review and numerical assessment of the random walk particle tracking method. J. Contam. Hydrol. 2006, 87, 277–305. [Google Scholar] [CrossRef]
- Karches, T.; Buzás, K. Investigation of residence time distribution and local mean age of fluid to determine dead-zones in Flow Field. Int. J. Comput. Methods Exp. Meas. 2013, 1, 132–141. [Google Scholar] [CrossRef]
- Rodrigues, A.E. Residence time distribution (RTD) revisited. Chem. Eng. Sci. 2021, 230, 116188. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Wang, X.; Yue, Q.; Xia, Z.; Xiao, H. Residence Time Distribution (RTD) Applications in Continuous Casting Tundish: A Review and New Perspectives. Metals 2022, 12, 1366. [Google Scholar] [CrossRef]
- Laramee, R.S.; Hauser, H.; Zhao, L.; Post, F.H. Topology-Based Flow Visualization, The State of the Art. In Topology-Based Methods in Visualization. Mathematics and Visualization; Hauser, H., Hagen, H., Theisel, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef] [Green Version]
- Dao, N.T.M.; Liu, B.; Terashima, M.; Yasui, H. Computational fluid dynamics study on attainable flow rate in a lamella settler by increasing inclined plates. J. Water Environ. Technol. 2019, 17, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Hirom, K.; Devi, T.T. Determining the Optimum Position and Size of Lamella Packet in an Industrial Wastewater Sedimentation Tank: A Computational Fluid Dynamics Study. Water Air Soil Pollut. 2022, 233, 261. [Google Scholar] [CrossRef]
- Jourdan, N.; Neveux, T.; Potier, O.; Kanniche, M.; Wicks, J.; Nopens, I.; Rehman, U.; Le Moullec, Y. Compartmental Modelling in chemical engineering: A critical review. Chem. Eng. Sci. 2019, 210, 115196. [Google Scholar] [CrossRef]
- Alvarado, A.; Vedantam, S.; Goethals, P.; Nopens, I. A compartmental model to describe hydraulics in a full-scale waste stabilization pond. Water Res. 2012, 46, 521–530. [Google Scholar] [CrossRef]
- Datta, A.; Bhunia, H.; Gupta, R. Residence time distribution studies on recycle reactor with recirculation. Int. J. Chem. React. Eng. 2021, 19, 1075–1088. [Google Scholar] [CrossRef]
- Pedersen, P.B.; von Ahnen, M.; Fernandes, P.; Naas, C.; Pedersen, L.F.; Dalsgaard, J. Particle surface area and bacterial activity in recirculating aquaculture systems. Aquac. Eng. 2017, 78, 18–23. [Google Scholar] [CrossRef]
- Aslam, A.; Khan, S.J.; Shahzad, H.M.A. Impact of sludge recirculation ratios on the performance of anaerobic membrane bioreactor for wastewater treatment. Bioresour. Technol. 2019, 288, 121473. [Google Scholar] [CrossRef]
- Schewe, G. Reynolds-number effects in flow around more-or-less bluff bodies. J. Wind. Eng. Ind. Aerodyn. 2001, 89, 1267–1289. [Google Scholar] [CrossRef]
- Wilson, T.E. Introduction and overview Water Environment Federation Clarifier Design, Manual of Practice No. FD-8. In WEFTEC; Water Environment Federation: Alexandria, VA, USA, 2005; pp. 4412–4416. [Google Scholar] [CrossRef]
- Luna, F.D.T.; Silva, A.G.; Fukumasu, N.K.; Bazan, O.; Gouveia, J.H.A.; Moraes, D., Jr.; Yanagihara, J.; Vianna, A.S., Jr. Fluid dynamics in continuous settler. Chem. Eng. J. 2019, 362, 712–720. [Google Scholar] [CrossRef]
Name of the Critical Point | Real and Imaginary Part of the Eigenvalue |
---|---|
Saddle point (S) | Re1 < 0, Re2 > 0, Im = 0 |
Attracting node (AN) | Re1 < 0, Re2 < 0, Im = 0 |
Repelling node (RN) | Re1 > 0, Re2 > 0, Im = 0 |
Attracting focus (AF) | Re1 < 0, Re2 < 0, Im < >0 |
Repelling focus (RF) | Re1 > 0, Re2 > 0, Im < >0 |
Center (C) | Re1 = 0, Re2 = 0, Im < >0 |
Scenario Name | Hydraulic Loading Rate [m/h] |
---|---|
Dry weather diurnal average (DWDA) | 1 |
Dry weather diurnal hourly peak (DWDP) | 2 |
Dry weather diurnal hourly low (DWDL) | 0.5 |
Wet weather instantaneous (WW | 4 |
Actual Simulation | Literature Data [30] | Deviation | |
---|---|---|---|
DWDL | 0.94 | no data | |
DWDA | 0.84 | 0.88 | 5% |
DWDP | 0.6 | 0.65 | 8% |
WW | 0.56 | no data |
DWDL | DWDA | DWDP | WW | |
---|---|---|---|---|
velocity magnitude (m/s) | 1.16 × 10−4 | 2.85 × 10−4 | 6.9 × 10−4 | 1.21 × 10−3 |
perpendicular velocity (m/s) | 6.52 × 10−8 | 9.47 × 10−8 | 1.38 × 10−7 | 1.88 × 10−7 |
turbulent kinetic energy (m2/s2) | 3.33 × 10−10 | 8.7 × 10−10 | 5.58 × 10−9 | 7.46 × 10−8 |
turbulent dissipation rate (m2/s3) | 9.43 × 10−13 | 1.52 × 10−12 | 7.5 × 10−12 | 1.53 × 10−11 |
turbulent viscosity (kg/ms) | 3.86 × 10−6 | 1.18 × 10−5 | 7.03 × 10−5 | 6.4 × 10−4 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Re1 | - | - | - | - | - | - | - | - | - | - | + | + | + | + | + | + | + | + | + |
Re2 | - | - | - | - | - | - | - | - | - | - | + | + | + | + | + | + | + | + | - |
Im | <>0 | <>0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Class | AF | AF | AN | AN | AN | AN | AN | AN | AN | AN | RN | RN | RN | RN | RN | RN | RN | RN | S |
Design HLR [m/h] | HLR—Zone 1 [m/h] | HLR—Zone 2 [m/h] | r [-] | m [-] | AI/A [-] | |
---|---|---|---|---|---|---|
DWDL | 0.5 | 1.33 | 0.75 | 0.29 | 1.45 | 0.33 |
DWDA | 1 | 1.66 | 2.25 | 0.38 | 1.5 | 0.56 |
DWDP | 2 | 2.70 | 7.14 | 0.43 | 1.47 | 0.72 |
WW | 4 | 5.18 | 18.00 | 0.45 | 1.44 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karches, T. Towards a Dynamic Compartmental Model of a Lamellar Settler. Symmetry 2023, 15, 864. https://doi.org/10.3390/sym15040864
Karches T. Towards a Dynamic Compartmental Model of a Lamellar Settler. Symmetry. 2023; 15(4):864. https://doi.org/10.3390/sym15040864
Chicago/Turabian StyleKarches, Tamás. 2023. "Towards a Dynamic Compartmental Model of a Lamellar Settler" Symmetry 15, no. 4: 864. https://doi.org/10.3390/sym15040864
APA StyleKarches, T. (2023). Towards a Dynamic Compartmental Model of a Lamellar Settler. Symmetry, 15(4), 864. https://doi.org/10.3390/sym15040864