Symmetry in Fluid Flow II
Conflicts of Interest
References
- Roshani, G.H.; Muhammad Ali, P.J.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Nazemi, E.; Eftekhari-Zadeh, E.; Kalmoun, E.M. Feasibility study of using X-ray tube and GMDH for measuring volume fractions of annular and stratified regimes in three-phase flows. Symmetry 2021, 13, 613. [Google Scholar] [CrossRef]
- Alamoudi, M.; Sattari, M.A.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E.M. Application of gamma attenuation technique and artificial intelligence to detect scale thickness in pipelines in which two-phase flows with different flow regimes and void fractions exist. Symmetry 2021, 13, 1198. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ushida, A.; Sato, T. Pseudo-laminarization of mixed microbubble water and complex fluids in capillary flows. Symmetry 2021, 13, 1141. [Google Scholar] [CrossRef]
- Diniz, G.F.; Souza, I.A.d.; Neto, J.F.d.M.; Menezes, A.W.; Souza, J.A.d.; Ortiz, J.; Costa, T.H.d.C.; Bessa, K.L.d.; Feitor, M.C. Investigation of the drag-reduction phenomenon on plasma-modified surface. Symmetry 2022, 14, 524. [Google Scholar] [CrossRef]
- Teso-Fz-Betoño, D.; Juica, M.; Portal-Porras, K.; Fernandez-Gamiz, U.; Zulueta, E. Estimating the reattachment length by realizing a comparison between URANS k-omega SST and LES WALE models on a symmetric geometry. Symmetry 2021, 13, 1555. [Google Scholar] [CrossRef]
- Masuda, T.; Tagawa, T. Effect of asymmetry of channels on flows in parallel plates with a sudden expansion. Symmetry 2021, 13, 1857. [Google Scholar] [CrossRef]
- Yahalom, A. A Three-function variational principle for stationary nonbarotropic magnetohydrodynamics. Symmetry 2021, 13, 1632. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Aminvash, E.; Bagherzadeh, M.; Ghaderi, A.; Kuriqi, A.; Najibi, A.; Ricardo, A.M. Laboratory investigation of hydraulic parameters on inclined drop equipped with fishway elements. Symmetry 2021, 13, 1643. [Google Scholar] [CrossRef]
- Mellmann, M.; Scholle, M. Symmetries and related physical balances for discontinuous flow phenomena within the framework of Lagrange formalism. Symmetry 2021, 13, 1662. [Google Scholar] [CrossRef]
- Daidzic, N.E. Unified theory of unsteady planar laminar flow in the presence of arbitrary pressure gradients and boundary movement. Symmetry 2022, 14, 757. [Google Scholar] [CrossRef]
- Satake, H.; Tagawa, T. Influence of centrifugal buoyancy in thermal convection within a rotating spherical shell. Symmetry 2022, 14, 2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagawa, T. Symmetry in Fluid Flow II. Symmetry 2023, 15, 1002. https://doi.org/10.3390/sym15051002
Tagawa T. Symmetry in Fluid Flow II. Symmetry. 2023; 15(5):1002. https://doi.org/10.3390/sym15051002
Chicago/Turabian StyleTagawa, Toshio. 2023. "Symmetry in Fluid Flow II" Symmetry 15, no. 5: 1002. https://doi.org/10.3390/sym15051002
APA StyleTagawa, T. (2023). Symmetry in Fluid Flow II. Symmetry, 15(5), 1002. https://doi.org/10.3390/sym15051002