Crystal Structure of Hydrotalcite Group Mineral—Desautelsite, Mg6MnIII2(OH)16(CO3)·4H2O, and Relationship between Cation Size and In-Plane Unit Cell Parameter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Chemical Analysis
2.2.2. Raman Spectroscopy
2.2.3. Powder X-ray Diffraction
2.2.4. Single-Crystal X-ray Diffraction
3. Results
3.1. Chemical Composition
3.2. Raman Spectroscopy
3.3. Powder X-ray Diffraction
3.4. Crystal Structure Solution and Refinement
4. Discussion
4.1. Crystal Structure
4.2. Chemical Composition
4.3. Octahedral Sheet: Chemistry, Cation Radii and Octahedra Distortion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, P.; Wang, H.; Feng, Z.; Ying, P.; Li, C. Direct immobilization of self-assembled polyoxometalate catalyst in layered double hydroxide for heterogeneous epoxidation of olefins. J. Catal. 2008, 256, 345–348. [Google Scholar] [CrossRef]
- Yu, J.; Fan, G.; Yang, Y.; Li, F. Multi-level three-dimensional Mg–Al layered double hydroxide hierarchical microstructures with enhanced basic catalytic property. J. Colloid Interf. Sci. 2014, 432, 1–9. [Google Scholar] [CrossRef]
- Fan, G.; Li, F.; Evans, D.G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066. [Google Scholar] [CrossRef] [PubMed]
- Béléké, A.B.; Mizuhata, M. Electrochemical properties of nickel–aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition. J. Power Sources 2010, 195, 7669–7676. [Google Scholar] [CrossRef]
- Choy, J.H.; Kwak, S.Y.; Park, J.S.; Jeong, Y.J. Cellular uptake behavior of [γ-32P] labeled ATP–LDH nanohybrids. J. Mater. Chem. 2001, 11, 1671–1674. [Google Scholar] [CrossRef]
- Nalawade, P.; Aware, B.; Kadam, V.J.; Hirlekar, R.S. Layered double hydroxides: A review. J. Sci. Ind. Res. India. 2009, 68, 267–272. [Google Scholar]
- Conterosito, E.; Croce, G.; Palin, L.; Pagano, C.; Perioli, L.; Viterbo, D.; Boccaleri, E.; Paul, G.; Milanesio, M. Structural characterization and thermal and chemical stability of bioactive molecule–hydrotalcite (LDH) nanocomposites. Phys. Chem. Chem. Phys. 2013, 15, 13418–13433. [Google Scholar] [CrossRef]
- Duan, X.; Evans, D.G. Layered Double Hydroxides; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Tronto, J.; Crepaldi, E.L.; Pavan, P.C.; Cipriano De Paula, C.; Valim, J.B. Organic anions of pharmaceutical interest intercalated in magnesium aluminum LDHs by two different methods. Mol. Cryst. Liq. Cryst. 2001, 356, 227–237. [Google Scholar] [CrossRef]
- Mills, S.J.; Christy, A.G.; Génin, J.M.; Kameda, T.; Colombo, F. Nomenclature of the hydrotalcite supergroup: Natural layered double hydroxides. Mineral. Mag. 2012, 76, 1289–1336. [Google Scholar] [CrossRef]
- Dunn, P.J.; Peacor, D.R.; Palmer, T.D. Desautelsite, a new mineral of the pyroaurite group. Am. Mineral. 1979, 64, 127–130. [Google Scholar]
- Matsubara, S.; Kato, A.; Nagashima, K. Desautelsite from Konomori, Kochi City, Japan. Bull. Natl. Sci. Mus. 1984, 10, 81–86. [Google Scholar]
- Hofmeister, W.; Platen, H.V. Crystal chemistry and atomic order in brucite-related double-layer structures. Crystallogr. Rev. 1992, 3, 3–26. [Google Scholar] [CrossRef]
- Richardson, I.G. Classification of possible ordered distributions of trivalent cations in layered double hydroxides and an explanation for the observed variation in the lower solid-solution limit. Acta Crystallogr. B 2013, 69, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorsi, E.; Merlino, S.; Orlandi, P. Zincalstibite, a new mineral, and cualstibite: Crystal chemical and structural relationships. Am. Mineral. 2007, 92, 198–203. [Google Scholar] [CrossRef]
- Mills, S.J.; Kampf, A.R.; Housley, R.M.; Favreau, G.; Pasero, M.; Biagioni, C.; Merlino, S.; Berbain, C.; Orlandi, P. Omsite, (Ni,Cu)2Fe3+(OH)6[Sb(OH)6], a new member of the cualstibite group from Oms, France. Mineral. Mag. 2012, 76, 1347–1354. [Google Scholar] [CrossRef]
- Mills, S.J.; Christy, A.G.; Kampf, A.R.; Housley, R.M.; Favreau, G.; Boulliard, J.-C.; Bourgoin, V. Zincalstibite-9R: The first nine-layer polytype with the layered double hydroxide structure-type. Mineral. Mag. 2012, 76, 1337–1345. [Google Scholar] [CrossRef]
- Kolitsch, U.; Giester, G.; Pippinger, T. The crystal structure of cualstibite-1M (formerly cyanophyllite), its revised chemical formula and its relation to cualstibite-1T. Mineral. Petrol. 2013, 107, 171–178. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Krivovichev, S.V.; Yakovenchuk, V.N.; Ivanyuk, G.Y.; Pakhomovsky, Y.A.; Mikhailova, J.A. Crystal chemistry of natural layered double hydroxides: 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkaline-ultrabasic massif, Kola peninsula, Russia. Mineral. Mag. 2018, 82, 329–346. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Krivovichev, S.V.; Pekov, I.V.; Yapaskurt, V.O. Crystal chemistry of chlormagaluminite, Mg4Al2(OH)12Cl2(H2O)2, a natural layered double hydroxide. Minerals 2019, 9, 221. [Google Scholar] [CrossRef]
- Rius, J.; Allmann, R. The superstructure of the double layer mineral wermlandite [Mg7(Al0.57,Fe3+0.43)2(OH)18]2+[(Ca0.6,Mg0.4)(SO4)2(H2O)12]2−. Z. Fur Krist. 1984, 168, 133–144. [Google Scholar] [CrossRef]
- Cooper, M.A.; Hawthorne, F.C. The crystal structure of shigaite, [AlMn22+(OH)6]3(SO4)2Na(H2O)6(H2O)6, a hydrotalcite group mineral. Can. Mineral. 1996, 34, 91–97. [Google Scholar]
- Huminicki, D.M.C.; Hawthorne, F.C. The crystal structure of nikischerite, NaFe62+Al3(SO4)2(OH)18(H2O)12, a mineral of the shigaite group. Can. Mineral. 2003, 41, 79–82. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Chukanov, N.V.; Jonsson, E.; Pekov, I.V.; Belakovskiy, D.I.; Vigasina, M.F.; Zubkova, N.V.; Van, K.V.; Britvin, S.N. Erssonite, CaMg7Fe3+2(OH)18(SO4)2⋅12H2O, a new hydrotalcite-supergroup mineral from Långban, Sweden. Mineral. Mag. 2021, 85, 817–826. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Krivovichev, S.V.; Pekov, I.; Greenwell, H.C. Crystal chemistry of natural layered double hydroxides. 5. Single-crystal structure refinement of hydrotalcite, [Mg6Al2(OH)16](CO3)(H2O)4. Mineral. Mag. 2019, 83, 269–280. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Cisneros, S.L.; Witkowski, R.E.; Oswald, D.L. Artinite from San Benito County, California. Mineral. Rec. 1977, 8, 457–460. [Google Scholar]
- Warr, L.N. IMA-CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- CrysAlisPro Software System, version 1.171.38.46; Rigaku Oxford Diffraction: Oxford, UK, 2015.
- Frost, R.L.; Erickson, K.L. Raman spectroscopic study of the hydrotalcite desautelsite Mg6Mn2CO3(OH)16·4H2O. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 2697–2701. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Ivanyuk, G.Y.; Krivovichev, S.V.; Yakovenchuk, V.N.; Pakhomovsky, Y.A.; Mikhailova, Y.A. Crystal chemistry of pyroaurite from the Kovdor pluton, Kola peninsula, Russia, and the Långban Fe–Mn deposit, Värmland, Sweden. Geol. Ore Depos. 2017, 59, 652–661. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Pekov, I.V.; Chukanov, N.V.; Yapaskurt, V.O.; Bocharov, V.N. Minerals of the system stichtite–pyroaurite–iowaite–woodallite from serpentinites of the Terekta Ridge (Gorny Altai, Russia). Russ. Geol. Geophys. 2020, 61, 36–46. [Google Scholar] [CrossRef]
- Mora, M.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Raman spectroscopy study of layered-double hydroxides containing magnesium and trivalent metals. Mater. Lett. 2014, 120, 193–195. [Google Scholar] [CrossRef]
- Britvin, S.N.; Dolivo-Dobrovolsky, D.V.; Krzhizhanovskaya, M.G. Software for processing of X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO 2017, 146, 104–107. (In Russian) [Google Scholar]
- Bookin, A.S.; Drits, V.A. Polytype diversity of the hydrotalcite-like minerals I. Possible polytypes and their diffraction features. Clays Clay Miner. 1993, 41, 551–557. [Google Scholar] [CrossRef]
- Braithwaite, R.S.W.; Dunn, P.J.; Pritchard, R.G.; Paar, W.H. Iowaite, a re-investigation. Mineral. Mag. 1994, 58, 79–85. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Chukanov, N.V.; Pekov, I.V.; Zolotarev, A.A.; Shilovskikh, V.V.; Bocharov, V.N. Crystal chemistry of iowaite, Mg6Fe+32(OH)16Cl2×4H2O, a natural layered double hydroxide. Appl. Clay Sci. 2023. [Google Scholar]
- Mills, S.J.; Whitfield, P.S.; Wilson, S.A.; Woodhouse, J.N.; Dipple, G.M.; Raudsepp, M.; Francis, C.A. The crystal structure of stichtite, re-examination of barbertonite, and the nature of polytypism in MgCr hydrotalcites. Am. Mineral. 2011, 96, 179–187. [Google Scholar] [CrossRef]
- Grguric, B.A.; Madsen, I.C.; Pring, A. Woodallite, a new chromium analogue of iowaite from the Mount Keith nickel deposit, Western Australia. Mineral. Mag. 2001, 65, 427–435. [Google Scholar] [CrossRef]
- Mills, S.J.; Whitfield, P.S.; Kampf, A.R.; Wilson, S.A.; Dipple, G.M.; Raudsepp, M.; Favreau, G. Contribution to the crystallography of hydrotalcites: The crystal structures of woodallite and takovite. J. Geosci. 2012, 57, 273–279. [Google Scholar] [CrossRef]
- Kasatkin, A.V.; Britvin, S.N.; Krzhizhanovskaya, M.G.; Chukanov, N.V.; Škoda, R.; Göttlicher, J.; Belakovskiy, D.I.; Pekov, I.V.; Levitskiy, V.V. Kaznakhtite, Ni6Co3+2(CO3)(OH)16⋅4H2O, a new natural layered double hydroxide, the member of the hydrotalcite supergroup. Mineral. Mag. 2022, 86, 841–848. [Google Scholar] [CrossRef]
- Song, Y.; Moon, H.S. Additional data on reevesite and its Co-analogue, as a new member of the hydrotalcite group. Clay Mineral. 1998, 33, 285–296. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Pekov, I.V.; Levitskaya, L.A.; Zadov, A.E. Droninoite, Ni3Fe3+Cl(OH)8·2H2O, a new hydrotalcite-group mineral species from the weathered Dronino meteorite. Geol. Ore Depos. 2009, 51, 767–773. [Google Scholar] [CrossRef]
- Koritnig, S.; Süsse, P. Meixnerit, Mg6Al2(OH)18·4H2O, ein neues Magnesium-Aluminium-Hydroxid-Mineral. Tschermaks Mineral. Petrogr. Mitt. 1975, 22, 79–87. [Google Scholar] [CrossRef]
Constituent | wt.% | Range | Stand. Dev. | Standards |
---|---|---|---|---|
MgO | 37.23 | 35.47–38.60 | 1.08 | Mg2SiO4 |
Al2O3 | 0.04 | 0.02–0.18 | 0.06 | Kyanite |
Mn2O3 | 20.90 | 20.47–21.27 | 0.32 | Mn2SiO4 |
Fe2O3 | 0.09 | 0.02–0.18 | 0.05 | FeS2 |
CO2 1 | 5.90 | |||
H2O 2 | 35.84 | |||
Total | 100.00 |
Desautelsite | Pyroaurite | Stichtite | Assignment | ||
---|---|---|---|---|---|
80137 | 29D | [30] | [31] | [32] | |
3650 | 3640 | 3646, 3608 | 3600–3500 | 3593 | O–H stretching of OH groups |
~3500 sh | ~3500 sh | 3509, 3409, 3325 | ~3300 sh | ~3300 sh | O–H stretching of H2O molecules |
- | - | 1393, 1349, 1342 | 1346 | - | Antisymmetric stretching vibrations of CO3 group |
1055 | 1057 | 1086, 1062, 1055 | 1058 | 1057, 1017 | Symmetric stretching vibrations of CO3 group |
533 | 533 | 535 | 527 | 534 | Mg–O–Mg [33] |
439 | 438 | 455, 436, 422 | - | 460 | Mn–O–Mn (desautelsite) Cr–O–Cr (stichtite) |
- | - | 313 | - | 316 | Lattice vibrations |
284 | 287 | 281 | 284 | 288 |
Sample 29D | Sample 80137 1 | Literature Data [11] | h | k | l | |||
---|---|---|---|---|---|---|---|---|
dmeas (Å) | Imeas (%) | dmeas (Å) | Imeas (%) | dmeas (Å) | Imeas (%) | |||
7.82 | 100 | 7.83 | 100 | 7.76 | 100 | 0 | 0 | 3 |
3.916 | 27 | 3.915 | 29 | 3.88 | 60 | 0 | 0 | 6 |
2.6361 | 13 | 2.6320 | 21 | 2.622 | 50 | 0 | 1 | 2 |
2.3444 | 13 | 2.3427 | 18 | 2.332 | 60 | 0 | 1 | 5 |
1.9897 | 10 | 1.9889 | 14 | 1.981 | 60 | 0 | 1 | 8 |
1.7739 | 2 | 1.7733 | 3 | 1.768 | 20 | 1 | 0 | 10 |
1.6758 | 2 | 1.6759 | 2 | 1.670 | 20 | 0 | 1 | 11 |
1.5612 | 6 | 1.5597 | 8 | 1.557 | 20 | 1 | 1 | 0 |
1.5309 | 7 | 1.5306 | 10 | 1.527 | 30 | 1 | 1 | 3 |
1.5039 | 1 | 1.5022 | 2 | 1.498 | 30 | 1 | 0 | 13 |
Crystal Chemical Data | |
---|---|
Crystal system | Trigonal |
Space group | R-3m |
a (Å) | 3.1238(2) |
c (Å) | 23.528(3) |
V (Å3) | 198.83(4) |
Z | 0.375 |
Calculated density (g/cm3) | 2.111 |
Absorption coefficient (mm−1) | 1.367 |
Crystal from | Hexagonal plate |
Crystal size (μm) | 30 × 30 × 10 |
Data collection | |
Diffractometer | Rigaku XtaLAB Synergy-S |
Temperature (K) | 293 |
Radiation, wavelength (Å) | MoKα, 0.71073 |
Range of data collection, θ (°) | 5.199–32.598 |
h, k, l ranges | −4→4, −4→4, −33→33 |
Total reflection collected | 1048 |
Unique reflections (Rint) | 121 (0.0386) |
Number of unique reflections F > 2σ(F) | 116 |
Data completeness (%) | 98.5 |
Structure refinement | |
Refinement method | Full-matrix least-squares on F2 |
Weighting coefficients a, b | 0.055400, 0.373000 |
Data/restrain/parameters | 121/2/13 |
R1 [F > 2σ(F)], wR2 [F > 2σ(F)] | 0.0386, 0.1063 |
R1 all, wR2 all | 0.0395, 0.1067 |
Goodness-of-fit on F2 | 1.276 |
Largest diff. peak and hole (ēÅ−3) | 0.78, −0.23 |
Atom | x | y | z | Ueq | s.o.f. | Assigned Site Populations |
---|---|---|---|---|---|---|
Octahedral sheet | ||||||
M (Mg) | 1 | 0 | 0 | 0.0158(5) | 0.772 * | Mg0.77Mn0.23(OH)2 |
M (Mn) | 1 | 0 | 0 | 0.0158(5) | 0.224 * | |
O1 | 1.3333 | 1/3 | 0.04335(11) | 0.0197(6) | 1 * | |
H1 | 1.3333 | 1/3 | 0.0806(13) | 0.030 | 1 * | |
Interlayer gallery | ||||||
O2 | 1.222(2) | −0.222(2) | 0.1664(17) | 0.078(7) | 0.186(8) | (CO3)0.88(H2O)5 ** |
C1 | 1 | 0 | 0.163(3) | 0.030(15) | 0.0545 * |
Atom | Atom | Bond Distance | Atom | Atom | Bond Distance |
---|---|---|---|---|---|
M | O1 | 2.0719(13) | C | O2 | 1.593(6) |
D–H | d(D–H) | d(H…A) | <DHA | d(D…A) | A |
O1-H1 | 0.88(4) | 2.11(5) | 163.3(5) | 2.96(4) | O2 |
Mineral | Empirical Chemical Formula | Space Group | Polytype | a, Å | c, Å | V, Å3 | Comment 1 | Reference |
---|---|---|---|---|---|---|---|---|
Desautelsite | Mg6.20(MnIII1.78Al0.01FeIII0.01)(OH)16(CO3)0.90·5.35H2O | R-3m | 3R | 3.124 | 23.528 | 198.8 | SC | This work, 29D |
Mg6.18MnIII1.82(OH)16(CO3)1·nH2O | R-3m | 3R | 3.119 | 23.49 | 197.9 | P | This work, 80137 | |
Mg6MnIII2(OH)16(CO3)1·4H2O | R3m or R-3m | 3R | 3.114 | 23.390 | 194.4 | SC | [11] | |
Hydrotalcite | Mg5.88Al1.82Fe3+0.30(OH)16(CO3)1.06·4H2O | R-3m | 3R | 3.073 | 23.326 | 190.7 | SC | [25] |
Mg5.87Al2.10Fe3+0.02(OH)16(CO3)1.06·4H2O | P63/mmc | 2H | 3.046 | 15.477 | 124.4 | |||
Pyroaurite | Mg6.08Fe3+1.76Al0.17(OH)16(CO3)1.00·4H2O | R-3m | 3R | 3.126 | 23.520 | 199.0 | SC | [31] |
Mg5.95Mn0.05Fe3+2.00(OH)16(CO3)1.00·4H2O | R-3m | 3R | 3.101 | 23.340 | 194.3 | SC | ||
Iowaite | (Mg5.9Fe2+0.1)Fe3+2(OH)16[Cl1.4(OH)0.48(CO3)0.06] ·4H2O | R-3m | 3R | 3.118 | 24.113 | 203.1 | SC | [36] |
Mg6.11(Fe3+0.85Cr0.78Al0.26)(OH)16Cl1.82·4H2O | R-3m | 3R | 3.110 | 24.120 | 202.0 | P | [32] | |
P63/mmc | 2H | 3.110 | 16.080 | 134.7 | P | |||
Mg6.02Fe3+1.67Al0.31(OH)16.00Cl1.67(BO3)0.11·4H2O | R-3m | 3R | 3.108 | 23.885 | 199.8 | SC | [37] | |
Stichtite Fe3+-rich | Mg6(Cr0.86Fe3+0.85Al0.29)(OH)16(CO3)·4H2O | R-3m | 3R | 3.100 | 23.550 | 196.4 | P | [32] |
P63/mmc | 2H | 3.100 | 15.700 | 130.9 | P | |||
Stichtite | n.g., possibly close to ideal Mg6Cr2(OH)16(CO3)·4H2O | R-3m | 3R | 3.096 | 23.507 | 195.1 | P | [38] |
P63/mmc | 2H | 3.097 | 15.619 | 129.7 | P | |||
P63/mmc | 2H | 3.096 | 15.627 | 129.8 | P | |||
Woodallite | Mg6.19(Cr1.21Fe0.51Al0.15)(OH)16[Cl1.62(CO3)0.17(SO4)0.01]·4H2O | R-3m | 3R | 3.103 | 24.111 | 201.1 | P | [39] |
n.g. | R-3m | 3R | 3.101 | 23.682 | 197.2 | P | [40] | |
Kaznakhtite | (Ni5.54Mg0.47Zn0.02)(Co3+1.83Cr0.11Al0.03)(OH)15.84C1.00O2.99Cl0.16⋅4H2O | R-3m | 3R | 3.052 | 23.180 | 186.9 | P | [41] |
Reevesite | (Ni5.837Mg0.106)(Fe3+1.804Co3+0.189)(OH)16(CO3)0.92(SO4)0.076⋅nH2O | n.g. R-3m(?) | n.g. 3R | 3.085 | 23.355 | 192.5 | P | [42] |
Takovite | n.g. 2 ? | R-3m | 3R | 3.029 | 22.599 | 179.6 | SC | [40] |
Droninoite | (Ni2.16Fe2+0.75Fe3+0.97)(OH)7.10 Cl1.62⋅2.28H2O 3 | R-3m | ? | 6.206 3 | 46.184 | 1540.4 | P | [43] |
Meixnerite | Mg6(Al1.95Fe3+0.05)(OH)16(OH)2⋅4H2O | R-3m | 3R | 3.046 | 22.930 | 184.2 | P | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhitova, E.S.; Sheveleva, R.M.; Kasatkin, A.V.; Zolotarev, A.A.; Bocharov, V.N.; Kupchinenko, A.N.; Belakovsky, D.I. Crystal Structure of Hydrotalcite Group Mineral—Desautelsite, Mg6MnIII2(OH)16(CO3)·4H2O, and Relationship between Cation Size and In-Plane Unit Cell Parameter. Symmetry 2023, 15, 1029. https://doi.org/10.3390/sym15051029
Zhitova ES, Sheveleva RM, Kasatkin AV, Zolotarev AA, Bocharov VN, Kupchinenko AN, Belakovsky DI. Crystal Structure of Hydrotalcite Group Mineral—Desautelsite, Mg6MnIII2(OH)16(CO3)·4H2O, and Relationship between Cation Size and In-Plane Unit Cell Parameter. Symmetry. 2023; 15(5):1029. https://doi.org/10.3390/sym15051029
Chicago/Turabian StyleZhitova, Elena S., Rezeda M. Sheveleva, Anatoly V. Kasatkin, Andrey A. Zolotarev, Vladimir N. Bocharov, Anastasia N. Kupchinenko, and Dmitry I. Belakovsky. 2023. "Crystal Structure of Hydrotalcite Group Mineral—Desautelsite, Mg6MnIII2(OH)16(CO3)·4H2O, and Relationship between Cation Size and In-Plane Unit Cell Parameter" Symmetry 15, no. 5: 1029. https://doi.org/10.3390/sym15051029
APA StyleZhitova, E. S., Sheveleva, R. M., Kasatkin, A. V., Zolotarev, A. A., Bocharov, V. N., Kupchinenko, A. N., & Belakovsky, D. I. (2023). Crystal Structure of Hydrotalcite Group Mineral—Desautelsite, Mg6MnIII2(OH)16(CO3)·4H2O, and Relationship between Cation Size and In-Plane Unit Cell Parameter. Symmetry, 15(5), 1029. https://doi.org/10.3390/sym15051029