Three Convergence Results for Inexact Iterates of Uniformly Locally Nonexpansive Mappings
Abstract
:1. Introduction
2. The Main Results
3. An Auxiliary Result
4. Proof of Theorem 2
5. Proof of Theorem 3
6. Proof of Theorem 4
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Betiuk-Pilarska, A.; Domínguez Benavides, T. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Func. Anal. 2016, 1, 343–359. [Google Scholar]
- Bruck, R.E.; Kirk, W.A.; Reich, S. Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces. Nonlinear Anal. 1982, 6, 151–155. [Google Scholar] [CrossRef]
- Butnariu, D.; Reich, S.; Zaslavski, A.J. Convergence to Fixed Points of Inexact Orbits of Bregman-Monotone and of Nonexpansive Operators in Banach Spaces. In Fixed Point Theory and Its Applications; Yokohama Publishers: Yokohama, Japan, 2006; pp. 11–32. [Google Scholar]
- de Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. Acad. Sci. Paris 1976, 283, 185–187. [Google Scholar]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal. 2017, 2, 657–666. [Google Scholar]
- Kirk, W.A. Contraction Mappings and Extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Func. Anal. 2016, 1, 63–84. [Google Scholar]
- Edelstein, M. An extension of Banach’s contraction principle. Proc. Am. Math. Soc. 1961, 12, 7–10. [Google Scholar]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Approximate Solutions of Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Butnariu, D.; Davidi, R.; Herman, G.T.; Kazantsev, I.G. Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 540–547. [Google Scholar] [CrossRef]
- Censor, Y.; Davidi, R.; Herman, G.T. Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 2010, 26, 12. [Google Scholar] [CrossRef] [PubMed]
- Censor, Y.; Davidi, R.; Herman, G.T.; Schulte, R.W.; Tetruashvili, L. Projected subgradient minimization versus superiorization. J. Optim. Theory Appl. 2014, 160, 730–747. [Google Scholar] [CrossRef]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Func. Anal. 2018, 3, 565–586. [Google Scholar]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Nikazad, T.; Davidi, R.; Herman, G.T. Accelerated Perturbation-Resilient Block-Iterative Projection Methods with Application to Image Reconstruction. Inverse Probl. 2012, 28, 19p. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685–699. [Google Scholar]
- Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2018, 3, 349–369. [Google Scholar]
- Ostrowski, A.M. The Round-Off Stability of Iterations. Z. Angew. Math. Mech. 1967, 47, 77–81. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Convergence of inexact iterates of uniformly locally nonexpansive mappings with summable errors. JP J. Fixed Point Theory Appl. 2022, 18, 1–11. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis, Developments in Mathematics; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reich, S.; Zaslavski, A.J. Three Convergence Results for Inexact Iterates of Uniformly Locally Nonexpansive Mappings. Symmetry 2023, 15, 1084. https://doi.org/10.3390/sym15051084
Reich S, Zaslavski AJ. Three Convergence Results for Inexact Iterates of Uniformly Locally Nonexpansive Mappings. Symmetry. 2023; 15(5):1084. https://doi.org/10.3390/sym15051084
Chicago/Turabian StyleReich, Simeon, and Alexander J. Zaslavski. 2023. "Three Convergence Results for Inexact Iterates of Uniformly Locally Nonexpansive Mappings" Symmetry 15, no. 5: 1084. https://doi.org/10.3390/sym15051084
APA StyleReich, S., & Zaslavski, A. J. (2023). Three Convergence Results for Inexact Iterates of Uniformly Locally Nonexpansive Mappings. Symmetry, 15(5), 1084. https://doi.org/10.3390/sym15051084