Advancements in Hybrid Fixed Point Results and F-Contractive Operators
Abstract
:1. Introduction
2. Preliminaries
- if ;
- for all with ;
- , for all with ;
- (symmetry in all three variables);
- , for all (rectangle inequality).
- (i)
- is G-convergent to h.
- (ii)
- , as .
- (iii)
- , as .
- (iv)
- , as .
- (i)
- The sequence is G-Cauchy.
- (ii)
- For any , we can find such that , .
- (F1)
- F is strictly increasing; that is, for all a, b , if , then ;
- (F2)
- for every sequence , if and only if ;
- (F3)
- we can find such that .
- (1)
- is monotonic increasing;
- (2)
- (1)
- ϕ is monotonic increasing;
- (2)
- (i)
- as for ;
- (ii)
- for all ;
- (iii)
- ϕ is continuous;
- (iv)
- = 0 if and only if ;
- (v)
- the series is convergent for .
3. Main Results
4. Applications to a Nonlinear Volterra Integral Equation
- (i)
- and are continuous;
- (ii)
- we can find such that for all and ,Then, the integral Equation (36) has a unique solution u in Ω.
- (i)
- It is clear that by fixing the constants and q, we can obtain several more consequences of Theorems 3 and 4.
- (ii)
- None of the findings proposed in this work can be written in the form of or . Therefore, they cannot be deduced from their analogs in MS.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les ope´rations dans les ensembles abstraits et leur application aux e´quations inte´grales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223–230. [Google Scholar]
- Cho, Y.J. Survey on metric fixed point theory and applications. In Advances in Real and Complex Analysis with Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 183–241. [Google Scholar]
- Mustafa, Z.; Sims, B. A New Approach to Generalized Metric Spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
- Dhage, B.C. Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc. 1992, 84, 329–336. [Google Scholar]
- Mustafa, Z.; Obiedat, H.; Awawdeh, F. Some Fixed Point Theorem for Mapping on Complete G-metric Spaces. Fixed Point Theory Appl. 2008, 2008, 189870. [Google Scholar] [CrossRef] [Green Version]
- Samet, B.; Vetro, C.; Vetro, F. Remarks on G-Metric Spaces. Int. J. Anal. 2013, 2013, 917158. [Google Scholar] [CrossRef] [Green Version]
- Jleli, M.; Samet, B. Remarks on G-metric Spaces and Fixed Point Theorems. Fixed Point Theory Appl. 2012, 2012, 210. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhu, C.; Zhu, L. A Note on Some Fixed Point Theorems on G-Metric Spaces. J. Appl. Anal. Comput. 2021, 11, 101–112. [Google Scholar] [CrossRef]
- Mustafa, Z.; Khandagji, M.; Shatanawi, W. Fixed point results on complete G-Metric spaces. Stud. Sci. Math. Hung. 2011, 48, 304–319. [Google Scholar] [CrossRef]
- Hammad, H.A.; Alshehri, M.G.; Shehata, A. Control functions in G-metric spaces: Novel methods for θ-fixed points and θ-fixed circles with an application. Symmetry 2023, 15, 164. [Google Scholar] [CrossRef]
- Jiddah, J.A.; Mohammed, S.S.; Imam, A.T. Advancements in fixed point results of generalized metric spaces: A Survey. Sohag J. Sci. 2023, 8, 165–198. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed Points of a New Type of Contractive Mappings in Complete Metric Spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Piri, H.; Kumam, P. Some Fixed Point Theorems Concerning F-contraction in Complete Metric Spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.; Al-Rawashdeh, A.; Azam, A. New Fixed Point Theorems for Generalized F-contractions in Complete Metric Spaces. Fixed Point Theory Appl. 2015, 2015, 80. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Joshi, V.; Singh, N.; Kumam, P. Fixed Point Results for Generalized F-contractive and Roger Hardy type F-contractive Mappings in G-metric Spaces. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. Matemát. 2017, 111, 473–487. [Google Scholar] [CrossRef]
- Vujaković, J.; Mitrović, S.; Pavlović, M.; Radenović, S. On Recent Results Concerning F-contraction in Generalized Metric Spaces. Mathematics 2020, 8, 767. [Google Scholar] [CrossRef]
- Hammad, H.A.; De la Sen, M. Fixed-point results for a generalized almost (s-q)-Jaggi F-Contraction-Type on b—metric-like spaces. Mathematics 2020, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Fabiano, N.; Kadelburg, Z.; Mirkov, N.; Čavić, V.S.; Radenović, S. On F-Contractions: A Survey. In Contemporary Mathematics; Universal Wiser Publisher: Singapore, 2022; pp. 327–342. [Google Scholar]
- Joshi, V.; Jain, S. G-Metric Spaces: From the Perspective of F-contractions and best proximity points. In Metric Structures and Fixed Point Theory; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021; pp. 103–148. [Google Scholar]
- Karapınar, E.; Fulga, A. A Hybrid Contraction that Involves Jaggi Type. Symmetry 2019, 11, 715. [Google Scholar] [CrossRef] [Green Version]
- Alansari, M.; Mohammed, S.S.; Azam, A.; Hussain, N. On Multivalued Hybrid Contractions with Applications. J. Funct. Spaces 2020, 2020, 8401403. [Google Scholar] [CrossRef]
- Mohammed, S.S.; Qiu-Hong, S.; Saima, R.; Usamot, I.F.; Khadijah, M.A. Fixed Points of Nonlinear Contractions with Applications. AIMS Math. 2021, 6, 9378–9396. [Google Scholar]
- Jiddah, J.A.; Mohammed, S.S.; Alansari, M.; Mohamed, S.K.; Bakery, A. Fixed Point Results of Jaggi-Type Hybrid Contraction in Generalized Metric Space. J. Funct. Spaces 2022, 2022, 2205423. [Google Scholar] [CrossRef]
- Mustafa, Z. A New Structure For Generalized Metric Spaces—With Applications To Fixed Point Theory. Ph.D. Thesis, The University of Newcastle, Callaghan, Australia, 2005. [Google Scholar]
- Hammad, H.A.; De la Sen, M. A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations. Mathematics 2019, 7, 634. [Google Scholar] [CrossRef] [Green Version]
- Algehyne, E.A.; Aldhabani, M.S.; Khan, F.A. Relational Contractions Involving (c)-Comparison Functions with Applications to Boundary Value Problems. Mathematics 2023, 11, 1277. [Google Scholar] [CrossRef]
- Alghamdi, M.; Karapinar, E. (G-β-ψ)-contractive Type Mappings in G-Metric Spaces. J. Appl. Anal. Comput. 2013, 11, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Karapinar, E.; Yazidi, H. Modified F-contractions via α-Admissible Mappings and Application to Integral Equations. Filomat 2017, 31, 1141–1148. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogbumba, R.O.; Shagari, M.S.; Alansari, M.; Khalid, T.A.; Mohamed, E.A.E.; Bakery, A.A. Advancements in Hybrid Fixed Point Results and F-Contractive Operators. Symmetry 2023, 15, 1253. https://doi.org/10.3390/sym15061253
Ogbumba RO, Shagari MS, Alansari M, Khalid TA, Mohamed EAE, Bakery AA. Advancements in Hybrid Fixed Point Results and F-Contractive Operators. Symmetry. 2023; 15(6):1253. https://doi.org/10.3390/sym15061253
Chicago/Turabian StyleOgbumba, Rosemary O., Mohammed Shehu Shagari, Monairah Alansari, Thwiba A. Khalid, Elsayed A. E. Mohamed, and Awad A. Bakery. 2023. "Advancements in Hybrid Fixed Point Results and F-Contractive Operators" Symmetry 15, no. 6: 1253. https://doi.org/10.3390/sym15061253
APA StyleOgbumba, R. O., Shagari, M. S., Alansari, M., Khalid, T. A., Mohamed, E. A. E., & Bakery, A. A. (2023). Advancements in Hybrid Fixed Point Results and F-Contractive Operators. Symmetry, 15(6), 1253. https://doi.org/10.3390/sym15061253