A Study on the Centroid of a Class of Solvable Lie Algebras
Abstract
:1. Introduction
2. Main Results
- (1)
- When , there is . So . This contradicts the hypothesis.
- (2)
- When , there isSo . This contradicts the hypothesis.
- (3)
- When , there is
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benkart, G.; Neher, E. The centroid of extended affine and root graded Lie algebras. J. Pure Appl. Algebra 2005, 205, 117–145. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Gao, S. The centroid of Extended Schrodinger Virasoro Lie Algebras. J. Huzhou Univ. 2018, 40, 8–11+29. [Google Scholar]
- Wang, C.; Zhang, Z. Centroid of n-Lie superalgebras. J. Jilin Eng. Norm. Univ. 2006, 6, 9–12. [Google Scholar]
- Zhou, J.; Cao, Y. The centroid of a Jordan-Lie algebra. J. Nat. Sci. Heilongjiang Univ. 2019, 36, 262–265. [Google Scholar]
- Bai, R.; An, H.; Li, Z. Centroid structures of n-Lie algebras. Linear Algebra Its Appl. 2008, 430, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, L. The Centroid of a Lie Triple Algebra. Abstr. Appl. Anal. 2013, 2013, 404219. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Du, D.; Chen, L. The centroid of a Leibniz triple system and its properties. J. Nat. Sci. Heilongjiang Univ. 2015, 32, 614–617. [Google Scholar]
- Xian, X. Derived Subalgebra and Automorphism Groups of Extended Heisenberg Algebras and Real Submanifold of Two-Dimensional Complex Projective Space; Nanjing Normal University: Nanjing, China, 2014. [Google Scholar]
- Chen, H.; Han, J.; Su, Y.; Yue, X. Two classes of non-weight modules over the twisted Heisenberg Virasoro algebra. Manuscripta Math. 2019, 160, 265–284. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Wang, D.; Han, H. Linear super-commuting maps and super-biderivations on the super-Virasoro algebra. Commun. Algebra 2016, 44, 5342–5350. [Google Scholar] [CrossRef]
- Burde, D.; Ender, C. Commutative Post-Lie algebra structures on nilpotent Lie algebras and Poisson algebras. Linear Algebra Its Appl. 2020, 584, 107–126. [Google Scholar] [CrossRef]
- Yu, D.; Mei, C.; Guo, J. Automorphisms and Automorphism Groups of Necklace Lie Algebra. Chin. Ann. Math. 2013, 34, 569–578. [Google Scholar]
- Yu, D.; Lu, C. Necklace Lie Subalgebras Induced by Some Special Arrow. Chin. Ann. Math. 2018, 39, 331–340. [Google Scholar]
- Yu, D.; Jiang, C.; Ma, J. Study on Poisson Algebra and Automorphism of a Special Class of Solvable Lie Algebras. Symmetry 2023, 15, 1115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Jiang, C.; Ma, J. A Study on the Centroid of a Class of Solvable Lie Algebras. Symmetry 2023, 15, 1451. https://doi.org/10.3390/sym15071451
Yu D, Jiang C, Ma J. A Study on the Centroid of a Class of Solvable Lie Algebras. Symmetry. 2023; 15(7):1451. https://doi.org/10.3390/sym15071451
Chicago/Turabian StyleYu, Demin, Chan Jiang, and Jiejing Ma. 2023. "A Study on the Centroid of a Class of Solvable Lie Algebras" Symmetry 15, no. 7: 1451. https://doi.org/10.3390/sym15071451
APA StyleYu, D., Jiang, C., & Ma, J. (2023). A Study on the Centroid of a Class of Solvable Lie Algebras. Symmetry, 15(7), 1451. https://doi.org/10.3390/sym15071451