Anchored and Lifted Diffusion Flames Supported by Symmetric and Asymmetric Edge Flames
Abstract
:1. Introduction
2. Model and Formulation
3. The Fast Chemistry Limit
4. The Merging Shear Flow
5. The Edge-Flame Structure
5.1. Symmetric Edge Flames
5.2. Asymmetric Edge Flames
6. The Edge-Flame Speed
7. Volumetric Heat Loss
8. Thermally Active Splitter Plate
9. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chung, S.H.; Lee, B.J. On the characteristics of laminar lifted flames in a nonpremixed jet. Combust. Flame 1991, 86, 62–72. [Google Scholar] [CrossRef]
- Juniper, M.; Candel, S. Edge diffusion flame stabilization behind a step over a liquid reactant. J. Propuls. Power 2003, 19, 332–341. [Google Scholar] [CrossRef]
- Liñán, A. Ignition and flame spread in laminar mixing layers. In Combustion in High-Speed Flows; Buckmaster, J., Jackson, T.L., Kumar, A., Eds.; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1994; pp. 461–476. [Google Scholar]
- Buckmaster, J.; Matalon, M. Anomalous Lewis number effects in tribrachial flames. Proc. Combust. Inst. 1988, 22, 1527–1535. [Google Scholar] [CrossRef]
- Dold, J.W. Flame propagation in a nonuniform Mixture: Analysis of a slowly varying triple flame. Combust. Flame 1989, 76, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Hartley, L.J.; Dold, J.W. Flame propagation in a nonuniform mixture: Analysis of a propagating triple-flame. Combust. Sci. Technol. 1991, 80, 23–46. [Google Scholar] [CrossRef]
- Juanós, A.J.; Sirignano, W.A. Triple flame: Inherent asymmetries and pentasectional character. Combust. Theory Model. 2014, 18, 454–473. [Google Scholar] [CrossRef]
- Daou, J.; Linan, A. Ignition and extinction fronts in counterflowing premixed reactive gases. Combust. Flame 1999, 118, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Vedarajan, T.; Buckmaster, J.; Ronney, P. Two-dimensional failure waves and ignition fronts in premixed combustion. Proc. Combust. Inst. 1998, 27, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.P.; Matalon, M.; Pantano, C. A flow pattern that sustains an edge flame in a straining mixing layer with finite thermal expansion. Proc. Combust. Inst. 2015, 35, 1015–1021. [Google Scholar] [CrossRef]
- Shields, B.; Freund, J.B.; Pantano, C. Stationary ethylene-air edge flamesin a wedge-shaped region at low and high strain rates. Combust. Theory Model. 2021, 25, 1039–1063. [Google Scholar] [CrossRef]
- Daou, J.; Liñán, A. Triple flames in mixing layers with nonunity Lewis numbers. Proc. Combust. Inst. 1998, 27, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Daou, J.; Matalon, M.; Liñán, A. Premixed Edge-Flames under Transverse Enthalpy Gradients. Combust. Flame 2000, 121, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Buckmaster, J. Edge-flames. J. Eng. Math. 1997, 31, 269–284. [Google Scholar] [CrossRef]
- Nayagam, V.; Williams, F.A. Lewis-number effects on edge-flame propagation. J. Fluid Mech. 2002, 458, 219–228. [Google Scholar] [CrossRef]
- Nayagam, V.; Williams, F. Curvature effects on edge flame propagation Iin the premixed-flame regime. Combust. Sci. Technol. 2004, 176, 2125–2142. [Google Scholar] [CrossRef]
- Knaus, R.; Pantano, C. A computational approach to flame hole dynamics using an embedded manifold approach. J. Comput. Phys. 2015, 296, 209–240. [Google Scholar] [CrossRef] [Green Version]
- Buckmaster, J. Edge-flames. Prog. Energy Combust. Sci. 2002, 28, 435–475. [Google Scholar] [CrossRef]
- Chung, S.H. Stabilization, propagation and instability of tribrachial triple flames. Proc. Combust. Inst. 2007, 31, 877–892. [Google Scholar] [CrossRef]
- Lyons, K.M. Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments. Prog. Energy Combust. Sci. 2007, 33, 211–231. [Google Scholar] [CrossRef]
- Matalon, M. Flame dynamics. Proc. Combust. Inst. 2009, 32, 57–82. [Google Scholar] [CrossRef]
- Westbrook, C.E.; Dryer, F. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 1981, 27, 31–43. [Google Scholar] [CrossRef]
- Lu, Z.; Matalon, M. Structure and dynamics of edge flames in the near wake of unequal merging shear flows. Combust. Theory Model. 2016, 20, 258–295. [Google Scholar] [CrossRef]
- Füri, M.; Papas, P.; Monkewitz, P.A. Non-premixed jet flame pulsations near extinction. Proc. Combust. Inst. 2000, 28, 831–838. [Google Scholar] [CrossRef]
- Bechtold, J.; Matalon, M. Effects of stoichiometry on stretched premixed flames. Combust. Flame 1999, 119, 217. [Google Scholar] [CrossRef]
- Cheatham, S.; Matalon, M. A general asymptotic theory of diffusion flames with application to cellular instability. J. Fluid Mech. 2000, 414, 105–144. [Google Scholar] [CrossRef]
- Li, T.Y. Effects of free-stream vorticity on the bahavior of a viscous boundary layer. J. Aeronaut. Sci. 1956, 23, 1128–1129. [Google Scholar]
- Murray, J.D. The boundary layer on a flat plate in a stream with uniform shear. J. Fluid Mech. 1961, 11, 309–316. [Google Scholar] [CrossRef]
- Toomre, A.; Rott, N. On the pressure induced by the boundary layer on a flat plate in shear flow. J. Fluid Mech. 1964, 19, 1–10. [Google Scholar] [CrossRef]
- Burke, S.; Schumann, T. Diffusion flames. Ind. Eng. Chem. 1928, 20, 998. [Google Scholar] [CrossRef]
- Koundinyan, S.; Matalon, M.; Stewart, D. Counterflow diffusion flames: Effects of thermal expansion and non-unity Lewis numbers. Combust. Theory Model. 2018, 22, 585–612. [Google Scholar] [CrossRef]
- Law, C.K. Combustion Physics; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Goldstein, S. Concerning some solutions of the boundary layer equations in hydrodynamics. Proc. Camb. Philos. Soc. 1930, 26, 1–30. [Google Scholar] [CrossRef]
- Rott, N.; Hakkinen, R.J. Similar solutions for merging shear flows. J. Aerosp. Sci. 1962, 29, 1134–1135. [Google Scholar] [CrossRef]
- Hakkinen, R.J.; Rott, N. Similar solutions for merging shear flows II. AIAA J. 1965, 3, 1553–1554. [Google Scholar] [CrossRef]
- Lu, Z.; Matalon, M. Edge flames in mixing layers: Effects of heat recirculation through thermally active splitter plates. Combust. Flame 2020, 217, 262–273. [Google Scholar] [CrossRef]
- Van, K.; Jung, K.S.; Yoo, C.S.; Oh, S.; Lee, B.J.; Cha, M.S.; Park, J.; Chung, S.H. Decreasing liftoff height behavior in diluted laminar lifted methane jet flames. Proc. Combust. Inst. 2019, 37, 2005–2012. [Google Scholar] [CrossRef]
- Van, K.H.; Park, J.; Yoon, S.H.; Chung, S.H.; Cha, M.S. Mechanism on oscillating lifted flames in nonpremixed laminar coflow jets. Proc. Combust. Inst. 2019, 37, 1997–2004. [Google Scholar] [CrossRef]
- Oh, S.; Van, K.H.; Jung, K.S.; Yoo, C.S.; Cha, M.S.; Chung, S.H.; Park, J. On the oscillating flame characteristics in nonpremixed laminar coflow-jets: An experimental and numerical study. Proc. Combust. Inst. 2021, 38, 2049–2056. [Google Scholar] [CrossRef]
- Kurdyumov, V.N.; Jiménez, C. Lifted jet edge flames: Symmetric and non-symmetric configurations. Combust. Theory Model. 2022, 26, 1114–1129. [Google Scholar] [CrossRef]
- Lu, Z.; Matalon, M. The speed and temperature of an edge flame stabilized in a mixing layer: Dependence on fuel properties and local mixture fraction gradient. Combust. Sci. Technol. 2020, 192, 1274–1291. [Google Scholar] [CrossRef]
- Kurdyumov, V.N.; Matalon, M. Radiation losses as a driving mechanism for flame oscillations. Proc. Combust. Inst. 2002, 29, 45–52. [Google Scholar] [CrossRef]
- Fujiwara, K.; Nakamura, Y. Experimental study on the unique stability mechanism via miniaturization of jet diffusion flames (microflame) by utilizing preheated air system. Combust. Flame 2013, 160, 1373–1380. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Hossain, A.; Matsuoka, T.; Nakamura, Y. A numerical study on heat-recirculation assisted combustion for small scale jet diffusion flames at near-extinction condition. Combust. Flame 2017, 178, 182–194. [Google Scholar] [CrossRef]
- Ruetsch, G.R.; Vervisch, L.; Liñán, A. Effects of heat release on triple flames. Phys. Fluids 1995, 7, 1447–1454. [Google Scholar] [CrossRef] [Green Version]
- Kurdyumov, V.N.; Matalon, M. Effects of thermal expansion on the stabilization of an edge-flame in a mixing-layer model. Proc. Combust. Inst. 2009, 32, 1107–1115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Matalon, M. Anchored and Lifted Diffusion Flames Supported by Symmetric and Asymmetric Edge Flames. Symmetry 2023, 15, 1547. https://doi.org/10.3390/sym15081547
Lu Z, Matalon M. Anchored and Lifted Diffusion Flames Supported by Symmetric and Asymmetric Edge Flames. Symmetry. 2023; 15(8):1547. https://doi.org/10.3390/sym15081547
Chicago/Turabian StyleLu, Zhanbin, and Moshe Matalon. 2023. "Anchored and Lifted Diffusion Flames Supported by Symmetric and Asymmetric Edge Flames" Symmetry 15, no. 8: 1547. https://doi.org/10.3390/sym15081547
APA StyleLu, Z., & Matalon, M. (2023). Anchored and Lifted Diffusion Flames Supported by Symmetric and Asymmetric Edge Flames. Symmetry, 15(8), 1547. https://doi.org/10.3390/sym15081547