Symmetric Enhancement of Visual Clarity through a Multi-Scale Dilated Residual Recurrent Network Approach for Image Deraining
Abstract
:1. Introduction
- We developed an image-deraining algorithm that harnesses the power of multi-scale dilated residual recurrent networks. This sophisticated tool is capable of not only effectively eliminating rain streaks from images but is also adept at restoring the intricate details of the background.
- We deployed convolutional activation layers (CAL) at the initial stage of the algorithm to glean the elementary features. Subsequently, we employed a combination of long short-term memory networks and gated recurrent units, which enabled an effective propagation of both the rain streaks’ characteristics and background details across different stages of the process.
- We incorporated DRB, composed of DC with three distinct dilation factors, to expand the receptive field and facilitate the extraction of the deep, multi-scale features of both the rain streaks and background information. Additionally, we added a CA mechanism to capture the richer image features and enhance the model’s performance given the complex and diverse nature of rain streaks.
- We performed a comprehensive evaluation of the approach using five benchmark datasets, assessed using five quality metrics against eighteen conventional and modern algorithms, verifying the robustness and flexibility of the proposed method.
2. Related Work
3. Proposed Method
3.1. Network Structure
3.2. Derain Model
3.3. LSTM
3.4. Gated Recurrent Unit
3.5. Dilated Residual Network
3.6. Channel Attention
3.7. Loss Function
4. Experiment and Result Analysis
4.1. Network Configuration
4.2. Datasets
4.3. Quantitative Metrics
4.4. Ablation Study
- The first configuration utilizes LSTM for the rain pattern recurrent layer and GRU for the background recurrent layer (denoted as LSTM+GRU).
- The second configuration applies GRU for the rain pattern recurrent layer and LSTM for the background recurrent layer (denoted as GRU+LSTM).
- The third configuration employs GRU for both layers (denoted as GRU+GRU).
4.5. Analysis of Loss Function
4.6. Quantitative Analysis
4.7. Qualitative Analysis of Synthetic Rain Images
4.8. Qualitative Analysis of Real Rain Images
5. Strengths and Weaknesses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, S.; Liu, Y.; Zhao, M.; Shi, Z.; You, Z.; Li, J. A comprehensive survey: Image deraining and stereo-matching task-driven performance analysis. Iet Image Process. 2022, 16, 11–28. [Google Scholar] [CrossRef]
- Rahman, Z.; Pu, Y.-F.; Aamir, M.; Wali, S.; Guan, Y. Efficient image enhancement model for correcting uneven illumination images. IEEE Access 2020, 8, 109038–109053. [Google Scholar] [CrossRef]
- Rahman, Z.; Aamir, M.; Pu, Y.F.; Ullah, F.; Dai, Q. A smart system for low-light image enhancement with color constancy and detail manipulation in complex light environments. Symmetry 2018, 10, 718. [Google Scholar] [CrossRef] [Green Version]
- Jiang, K.; Wang, Z.; Yi, P.; Chen, C.; Wang, Z.; Wang, X.; Jiang, J.; Lin, C.W. Rain-free and residue hand-in-hand: A progressive coupled network for real-time image deraining. IEEE Trans. Image Process. 2021, 30, 7404–7418. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Aamir, M.; Ali, Z.; Saudagar, A.K.J.; AlTameem, A.; Muhammad, K. Efficient Contrast Adjustment and Fusion Method for Underexposed Images in Industrial Cyber-Physical Systems. IEEE Syst. J. 2023. [Google Scholar] [CrossRef]
- Hettiarachchi, P.; Nawaratne, R.; Alahakoon, D.; De Silva, D.; Chilamkurti, N. Rain streak removal for single images using conditional generative adversarial networks. Appl. Sci. 2021, 11, 2214. [Google Scholar]
- Xiao, J.; Zou, W.; Chen, Y.; Wang, W.; Lei, J. Single image rain removal based on depth of field and sparse coding. Pattern Recognit. Lett. 2018, 116, 212–217. [Google Scholar] [CrossRef]
- Li, Y.; Tan, R.T.; Guo, X.; Lu, J.; Brown, M.S. Single image rain streak decomposition using layer priors. IEEE Trans. Image Process. 2017, 26, 3874–3885. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.X.; Huang, T.Z.; Zhao, X.L.; Deng, L.J.; Wang, Y. Fastderain: A novel video rain streak removal method using directional gradient priors. IEEE Trans. Image Process. 2018, 28, 2089–2102. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Huang, J.; Ding, X.; Liao, Y.; Paisley, J. Clearing the skies: A deep network architecture for single-image rain removal. IEEE Trans. Image Process. 2017, 26, 2944–2956. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, M.; Gu, Z. Deep residual learning for image recognition: A survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Li, P.; Jin, J.; Jin, G.; Fan, L. Scale-Space Feature Recalibration Network for Single Image Deraining. Sensors 2022, 22, 6823. [Google Scholar] [CrossRef]
- Zhang, H.; Patel, V.M. Density-aware single image de-raining using a multi-stream dense network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 695–704. [Google Scholar]
- Zhang, H.; Sindagi, V.; Patel, V.M. Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 3943–3956. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Wang, D.; Wang, Z.; Zhang, L. PRAGAN: Progressive Recurrent Attention GAN with Pretrained ViT Discriminator for Single-Image Deraining. Sensors 2022, 22, 9587. [Google Scholar] [CrossRef]
- Li, Y.; Tan, R.T.; Guo, X.; Lu, J.; Brown, M.S. Rain streak removal using layer priors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2736–2744. [Google Scholar]
- Chen, B.H.; Huang, S.C.; Kuo, S.Y. Error-optimized sparse representation for single image rain removal. IEEE Trans. Ind. Electron. 2017, 64, 6573–6581. [Google Scholar] [CrossRef]
- Kim, D.H.; Ahn, W.J.; Lim, M.T.; Kang, T.K.; Kim, D.W. Frequency-Based Haze and Rain Removal Network (FHRR-Net) with Deep Convolutional Encoder-Decoder. Appl. Sci. 2021, 11, 2873. [Google Scholar] [CrossRef]
- Fu, X.; Huang, J.; Zeng, D.; Huang, Y.; Ding, X.; Paisley, J. Removing rain from single images via a deep detail network. In Proceedings of the IEEE Conference on Computer Vision and pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3855–3863. [Google Scholar]
- Yang, W.; Tan, R.T.; Feng, J.; Liu, J.; Guo, Z.; Yan, S. Deep joint rain detection and removal from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1357–1366. [Google Scholar]
- Yu, X.; Zhang, G.; Tan, F.; Li, F.; Xie, W. Progressive Hybrid-Modulated Network for Single Image Deraining. Mathematics 2023, 11, 691. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Lin, Z.; Liu, H.; Zha, H. Recurrent squeeze-and-excitation context aggregation net for single image deraining. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 254–269. [Google Scholar]
- Jiang, K.; Wang, Z.; Yi, P.; Chen, C.; Huang, B.; Luo, Y.; Ma, J.; Jiang, J. Multi-scale progressive fusion network for single image deraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8346–8355. [Google Scholar]
- Tang, Q.; Yang, J.; Liu, H.; Guo, Z.; Jia, W. Single image deraining using context aggregation recurrent network. J. Vis. Commun. Image Represent. 2021, 75, 103039. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Xu, L. Multi-scale hourglass hierarchical fusion network for single image deraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 872–879. [Google Scholar]
- Huang, S.; Xu, Y.; Ren, M.; Yang, Y.; Wan, W. Rain Removal of Single Image Based on Directional Gradient Priors. Appl. Sci. 2022, 12, 11628. [Google Scholar] [CrossRef]
- Son, C.H.; Jeong, D.H. Heavy Rain Face Image Restoration: Integrating Physical Degradation Model and Facial Component-Guided Adversarial Learning. Sensors 2022, 22, 5359. [Google Scholar] [CrossRef]
- Cao, M.; Gao, Z.; Ramesh, B.; Mei, T.; Cui, J. A two-stage density-aware single image deraining method. IEEE Trans. Image Process. 2021, 30, 6843–6854. [Google Scholar] [CrossRef]
- Guo, Z.; Hou, M.; Sima, M.; Feng, Z. DerainAttentionGAN: Unsupervised single-image deraining using attention-guided generative adversarial networks. Signal Image Video Process. 2022, 16, 185–192. [Google Scholar] [CrossRef]
- Zhang, T.; Li, J.; Hua, Z. Iterative multi-scale residual network for deblurring. IET Image Process. 2021, 15, 1583–1595. [Google Scholar] [CrossRef]
- Ople, J.J.M.; Yeh, P.Y.; Sun, S.W.; Tsai, I.T.; Hua, K.L. Multi-scale neural network with dilated convolutions for image deblurring. IEEE Access 2020, 8, 53942–53952. [Google Scholar] [CrossRef]
- Wang, T.; Yang, X.; Xu, K.; Chen, S.; Zhang, Q.; Lau, R.W. Spatial attentive single-image deraining with a high quality real rain dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12270–12279. [Google Scholar]
- Wei, W.; Meng, D.; Zhao, Q.; Xu, Z.; Wu, Y. Semi-supervised transfer learning for image rain removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3877–3886. [Google Scholar]
- Li, S.; Araujo, I.B.; Ren, W.; Wang, Z.; Tokuda, E.K.; Junior, R.H.; Cesar-Junior, R.; Zhang, J.; Guo, X.; Cao, X. Single image deraining: A comprehensive benchmark analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3838–3847. [Google Scholar]
- Bakurov, I.; Buzzelli, M.; Schettini, R.; Castelli, M.; Vanneschi, L. Structural similarity index (SSIM) revisited: A data-driven approach. Expert Syst. Appl. 2022, 189, 116087. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Chen, H.; Wang, D.; Deng, J. VP-NIQE: An opinion-unaware visual perception natural image quality evaluator. Neurocomputing 2021, 463, 17–28. [Google Scholar] [CrossRef]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- Liu, L.; Liu, B.; Huang, H.; Bovik, A.C. No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 2014, 29, 856–863. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Fan, Z.; Wu, H.; Fu, X.; Huang, Y.; Ding, X. Residual-guide network for single image deraining. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 1751–1759. [Google Scholar]
- Ba, Y.; Zhang, H.; Yang, E.; Suzuki, A.; Pfahnl, A.; Chandrappa, C.C.; de Melo, C.M.; You, S.; Soatto, S.; Wong, A.; et al. Not just streaks: Towards ground truth for single image deraining. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2022; pp. 723–740. [Google Scholar]
- Fu, X.; Xiao, J.; Zhu, Y.; Liu, A.; Wu, F.; Zha, Z.J. Continual image deraining with hypergraph convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9534–9551. [Google Scholar] [CrossRef]
- Ran, W.; Yang, B.; Ma, P.; Lu, H. TRNR: Task-Driven Image Rain and Noise Removal With a Few Images Based on Patch Analysis. IEEE Trans. Image Process. 2023, 32, 721–736. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.J.; Huang, T.Z.; Zhao, X.L.; Jiang, T.X. A directional global sparse model for single image rain removal. Appl. Math. Model. 2018, 59, 662–679. [Google Scholar] [CrossRef]
- Nanba, Y.; Miyata, H.; Han, X.H. Dual heterogeneous complementary networks for single image deraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 568–577. [Google Scholar]
- Yang, H.; Zhou, D.; Cao, J.; Zhao, Q. DPNet: Detail-preserving image deraining via learning frequency domain knowledge. Digit. Signal Process. 2022, 130, 103740. [Google Scholar] [CrossRef]
- Tejaswini, M.; Sumanth, T.H.; Naik, K.J. Single image deraining using modified bilateral recurrent network (modified_BRN). Multimed. Tools Appl. 2023, 1–24. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, H.; Fan, W.; Wu, X.M.; Chen, J. Single image rain removal using recurrent scale-guide networks. Neurocomputing 2022, 467, 242–255. [Google Scholar] [CrossRef]
- Fu, X.; Liang, B.; Huang, Y.; Ding, X.; Paisley, J. Lightweight pyramid networks for image deraining. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1794–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Shen, Z.; Qiu, Y.; Chen, S. Contrastive learning-based generative network for single image deraining. J. Electron. Imaging 2022, 31, 023022. [Google Scholar] [CrossRef]
- Wang, H.; Yue, Z.; Xie, Q.; Zhao, Q.; Zheng, Y.; Meng, D. From rain generation to rain removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14791–14801. [Google Scholar]
- Gao, F.; Mu, X.; Ouyang, C.; Yang, K.; Ji, S.; Guo, J.; Wei, H.; Wang, N.; Ma, L.; Yang, B. Mltdnet: An efficient multi-level transformer network for single image deraining. Neural Comput. Appl. 2022, 34, 14013–14027. [Google Scholar] [CrossRef]
- Hsu, W.Y.; Chang, W.C. Recurrent wavelet structure-preserving residual network for single image deraining. Pattern Recognit. 2023, 137, 109294. [Google Scholar] [CrossRef]
Methods | Datasets | ||||||
---|---|---|---|---|---|---|---|
Rain100H | Rain100L | Rain128 | |||||
Year | SSIM | SSIM | SSIM | ||||
DID-MDN [13] | 2018 | 25.92 | 0.84 | 36.12 | 0.96 | 32.35 | 0.89 |
ResGuideNet [40] | 2018 | 27.89 | 0.89 | 36.69 | 0.95 | 34.77 | 0.96 |
SSIR [33] | 2019 | 22.47 | 0.71 | 32.37 | 0.93 | 24.12 | 0.88 |
NJS [41] | 2022 | 26.22 | 0.77 | 34.17 | 0.93 | 28.44 | 0.90 |
CID [42] | 2023 | 32.98 | 0.91 | 37.88 | 0.95 | 36.22 | 0.94 |
TRNR [43] | 2023 | 30.02 | 0.92 | 38.65 | 0.97 | 37.02 | 0.95 |
Ours | 2023 | 33.72 | 0.94 | 39.53 | 0.99 | 36.61 | 0.97 |
Datasets | Methods | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LPNet [49] | RSN [48] | CLGN [50] | VRGNet [51] | MSPFN [23] | Mltdnet [52] | RWS [53] | Ours | |||||||||
Metrics | ||||||||||||||||
SSEQ | VP-NIQE | SSEQ | VP-NIQE | SSEQ | VP-NIQE | SSEQ | VP-NIQE | SSEQ | VP-NIQE | SSEQ | VP-NIQE | SSEQ | VP-NIQE | SSEQ | VP-NIQE | |
RIS | 53.111 | 53.111 | 53.111 | 4.831 | 47.033 | 5.374 | 47.033 | 6.013 | 48.801 | 5.679 | 46.224 | 7.152 | 44.562 | 6.889 | 43.911 | 6.080 |
Real147 | 30.509 | 4.831 | 30.587 | 4.064 | 34.261 | 3.979 | 34.127 | 4.003 | 32.555 | 3.897 | 31.312 | 3.897 | 30.115 | 3.925 | 29.208 | 3.880 |
RID | 18.353 | 5.686 | 31.745 | 5.686 | 34.994 | 4.058 | 24.263 | 5.087 | 20.821 | 4.995 | 18.811 | 4.125 | 17.721 | 3.962 | 16.488 | 3.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhutto, J.A.; Zhang, R.; Rahman, Z. Symmetric Enhancement of Visual Clarity through a Multi-Scale Dilated Residual Recurrent Network Approach for Image Deraining. Symmetry 2023, 15, 1571. https://doi.org/10.3390/sym15081571
Bhutto JA, Zhang R, Rahman Z. Symmetric Enhancement of Visual Clarity through a Multi-Scale Dilated Residual Recurrent Network Approach for Image Deraining. Symmetry. 2023; 15(8):1571. https://doi.org/10.3390/sym15081571
Chicago/Turabian StyleBhutto, Jameel Ahmed, Ruihong Zhang, and Ziaur Rahman. 2023. "Symmetric Enhancement of Visual Clarity through a Multi-Scale Dilated Residual Recurrent Network Approach for Image Deraining" Symmetry 15, no. 8: 1571. https://doi.org/10.3390/sym15081571
APA StyleBhutto, J. A., Zhang, R., & Rahman, Z. (2023). Symmetric Enhancement of Visual Clarity through a Multi-Scale Dilated Residual Recurrent Network Approach for Image Deraining. Symmetry, 15(8), 1571. https://doi.org/10.3390/sym15081571