Antihydrogen and Hydrogen: Search for the Difference
Abstract
:1. Introduction
2. Positron and Anti-Proton
2.1. Charge
2.2. Mass
2.3. Magnetic Moment
3. Laser Spectroscopy
3.1. Positronium
3.2. Antihydrogen, 1S–2S
3.3. Antihydrogen, Hyperfine and the Lamb Shift
4. Gravitational Tests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dirac, P.A.M. The quantum theory of the electron. Proc. R. Soc. Lond. A 1928, 117, 610. [Google Scholar]
- Anderson, C.D. The apparent existence of easily deflectable positives. Science 1932, 76, 238–239. [Google Scholar] [CrossRef]
- Shong, J.A.D., Jr.; Hildebrand, R.H.; Meyer, P. Ratio of electrons to positrons in the primary cosmic radiation. Phys. Rev. Lett. 1964, 12, 3. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Borisov, S.; et al. PAMELA measurements of cosmic-ray proton and helium spectra. Science 2011, 332, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; et al. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope. Phys. Rev. Lett. 2012, 108, 011103. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.; Cavasonza, L.A.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV. Phys. Rev. Lett. 2013, 110, 141102. [Google Scholar] [CrossRef] [PubMed]
- Haymes, R.C.; Ellis, D.V.; Fishman, G.J.; Glenn, S.W.; Kurfess, J.D. Observation of hard radiation from the region of the Galactic Center. Astrophys. J. 1969, 157, 1455. [Google Scholar] [CrossRef]
- Knödlseder, J.; Jean, P.; Lonjou, V.; Weidenspointner, G.; Guessoum, N.; Gillard, W.; Skinner, G.; von Ballmoos, P.; Vedrenne, G.; Roques, J.-P.; et al. The all-sky distribution of 511 keV electron-positron annihilation emission. Astron. Astrophys. 2005, 441, 513–532. [Google Scholar] [CrossRef]
- Golden, R.L.; Horan, S.; Mauger, B.G.; Badhwar, G.D.; Lacy, J.L.; Stephens, S.A.; Daniel, R.R.; Zipse, J.E. Evidence for the existence of cosmic-ray antiprotons. Phys. Rev. Lett. 1979, 43, 1196. [Google Scholar] [CrossRef]
- Aguilar, M.; Cavasonza, L.A.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 2016, 117, 091103. [Google Scholar] [CrossRef]
- Canetti, L.; Drewes, M.; Shaposhnikov, M. Matter and Antimatter in the Universe. New J. Phys. 2012, 14, 095012. [Google Scholar] [CrossRef]
- Fortson, E.N.; Lewis, L.L. Atomic parity nonconservation experiments. Phys. Rep. 1984, 113, 289–344. [Google Scholar] [CrossRef]
- Cairncross, W.B.; Gresh, D.N.; Grau, M.; Cossel, K.C.; Roussy, T.S.; Ni, Y.; Zhou, Y.; Cornell, E.A. Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 2017, 119, 153001. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Kolachevsky, N.; Zimmermann, M.; Holzwarth, R.; Udem, T.; Hänsch, T.W.; Abgrall, M.; Grünert, J.; Maksimovic, I.; Bize, S. et al. New limits on the drift of fundamental constants from laboratory measurements. Phys. Rev. Lett. 2004, 92, 230802. [Google Scholar] [CrossRef]
- Hohensee, M.A.; Leefer, N.; Budker, D.; Harabati, C.; Dzuba, V.A.; Flambaum, V.V. Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. Phys. Rev. Lett. 2013, 111, 050401. [Google Scholar] [CrossRef] [PubMed]
- Derevianko, A.; Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 2014, 10, 933–936. [Google Scholar] [CrossRef]
- Safronova, M.S.; Budker, D.; DeMille, D.; Kimball, D.F.J.; Derevianko, A.; Clark, C.W. Search for new physics with atoms and molecules. Rev. Mod. Phys. 2018, 90, 025008. [Google Scholar] [CrossRef]
- Hughes, R.J.; Deutch, B.I. Electric charges of positrons and antiprotons. Phys. Rev. Lett. 1992, 69, 578. [Google Scholar] [CrossRef] [PubMed]
- Bressi, G.; Carugno, G.; Della Valle, F.; Galeazzi, G.; Ruoso, G.; Sartori, G. Testing the neutrality of matter by acoustic means in a spherical resonator. Phys. Rev. A 2011, 83, 052101. [Google Scholar] [CrossRef]
- Borchert, M.J.; Devlin, J.A.; Erlewein, S.R.; Fleck, M.; Harrington, J.A.; Higuchi, T.; Latacz, B.M.; Voelksen, F.; Wursten, E.J.; Abbass, F.; et al. A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio. Nature 2022, 601, 53–57. [Google Scholar] [CrossRef]
- Gabrielse, G.; Khabbaz, A.; Hall, D.S.; Heimann, C.; Kalinowsky, H.; Jhe, W. Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 1999, 82, 3198. [Google Scholar] [CrossRef]
- Hori, M.; Sótér, A.; Barna, D.; Dax, A.; Hayano, R.; Friedreich, S.; Juhász, B.; Pask, T.; Widmann, E.; Horváth, D.; et al. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 2011, 475, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Constants. Available online: https://physics.nist.gov/cuu/Constants/ (accessed on 21 July 2023).
- Bluhm, R.; Kostelecky, V.A.; Russell, N. Theory of the anomalous magnetic moment of the electron. AIP Conf. Proc. 1999, 457, 138–142. [Google Scholar]
- Schwinberg, P.B.; Dyck, R.S.V., Jr.; Dehmelt, H.G. Trapping and thermalization of positrons for geonium spectroscopy. Phys. Lett. A 1981, 81, 119–120. [Google Scholar] [CrossRef]
- Anderson, V.; Rodgers, M.A.; Tsao, D. Measuring Positron Mass Using Gamma-ray Detection of Electron-Positron Annihilation (Unpublished). Available online: https://studylib.net/doc/5878297/measuring-positron-mass-using-gamma (accessed on 21 July 2023).
- Aoyama, T.; Kinoshita, T.; Nio, M. Theory of the anomalous magnetic moment of the electron. Atoms 2019, 7, 28. [Google Scholar] [CrossRef]
- Fan, X.; Myers, T.G.; Sukra, B.A.D.; Gabrielse, G. Measurement of the electron magnetic moment. Phys. Rev. Lett. 2023, 130, 071801. [Google Scholar] [CrossRef]
- Dyck, R.S.V., Jr.; Schwinberg, P.B.; Dehmelt, H.G. New high-precision comparison of electron and positron g factors. Phys. Rev. Lett. 1987, 59, 26. [Google Scholar] [CrossRef]
- DiSciacca, J.; Gabrielse, G. Direct measurement of the proton magnetic moment. Phys. Rev. Lett. 2012, 108, 153001. [Google Scholar] [CrossRef]
- Mooser, A.; Ulmer, S.; Blaum, K.; Franke, K.; Kracke, H.; Leiteritz, C.; Quint, W.; Rodegheri, C.C.; Smorra, C.; Walz, J. Direct high-precision measurement of the magnetic moment of the proton. Nature 2014, 509, 596–599. [Google Scholar] [CrossRef]
- Schneider, G.; Mooser, A.; Bohman, M.; Schön, N.; Harrington, J.; Higuchi, T.; Nagahama, H.; Sellner, S.; Smorra, C.; Blaum, K.; et al. Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. Science 2017, 358, 1081–1084. [Google Scholar] [CrossRef]
- Smorra, C.; Sellner, S.; Borchert, M.J.; Harrington, J.A.; Higuchi, T.; Nagahama, H.; Tanaka, T.; Mooser, A.; Schneider, G.; Bohman, M.; et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature 2017, 550, 371. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C.L.; Charlton, M.; Charman, A.E.; Eriksson, S.; et al. An improved limit on the charge of antihydrogen from stochastic acceleration. Nature 2016, 529, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.M.; Blewitt, G.; Dailey, C.; Murphy, M.; Pospelov, M.; Rollings, A.; Sherman, J.; Williams, W.; Derevianko, A. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun. 2017, 8, 1195. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Takamizawa, A.; Akamatsu, D.; Kawasaki, A.; Nishiyama, A.; Hosaka, K.; Hisai, Y.; Wada, M.; Inaba, H.; Tanabe, T.; et al. Search for ultralight dark matter from long-term frequency comparisons of optical and microwave atomic clocks. Phys. Rev. Lett. 2022, 129, 241301. [Google Scholar] [CrossRef]
- Chu, S.; Mills, A.P., Jr.; Hall, J.L. Measurement of the Positronium 13S1→23S1 Interval by Doppler-Free Two-Photon Spectroscopy. Phys. Rev. Lett. 1984, 52, 1689. [Google Scholar] [CrossRef]
- Fee, M.S.; Chu, S.; Mills, A.P., Jr.; Chichester, R.J.; Zuckerman, D.M.; Shaw, E.D.; Danzmann, K. Measurement of the positronium 13S1→23S1 interval by continuous-wave two-photon excitation. Phys. Rev. A 1993, 48, 192. [Google Scholar] [CrossRef]
- Adkins, G.S.; Kim, M.; Parsons, C.; Fell, R.N. Three-photon-annihilation contributions to positronium energies at order mα7. Phys. Rev. Lett. 2015, 115, 233401. [Google Scholar] [CrossRef]
- Amsler, C.; Antonello, M.; Belov, A.; Bonomi, G.; Brusa, R.S.; Caccia, M.; Camper, A.; Caravita, R.; Castelli, F.; Cerchiari, G.; et al. Velocity-selected production of 23S metastable positronium. Phys. Rev. A 2019, 99, 033405. [Google Scholar] [CrossRef]
- Babij, T.J.; Cassidy, D.B. Positronium microwave spectroscopy using Ramsey interferometry. Eur. Phys. J. D 2022, 76, 121. [Google Scholar] [CrossRef]
- Crivelli, P.; Wichmann, G. Positronium and Muonium 1S–2S laser spectroscopy as a probe for the standard-model extension. arXiv 2016, arXiv:1607.06398. [Google Scholar]
- Baur, G.A.; Boero, G.; Brauksiepe, A.; Buzzo, A.; Eyrich, W.; Geyer, R.; Grzonka, D.; Hauffe, J.; Kilian, K.; LoVetere, M.; et al. Production of antihydrogen. Phys. Lett. B 1996, 368, 251–258. [Google Scholar] [CrossRef]
- Andresen, G.B.; Ashkezari, M.D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P.D.; Butler, E.; Cesar, C.L.; Chapman, S.; Charlton, M.; Deller, A.; et al. Trapped antihydrogen. Nature 2010, 468, 673. [Google Scholar] [CrossRef] [PubMed]
- Andresen, G.B.; Ashkezari, M.D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P.D.; Butler, E.; Cesar, C.L.; Chapman, S.; Charlton, M.; Deller, A.; et al. Confinement of antihydrogen for 1000 s. Nat. Phys. 2011, 7, 558–564. [Google Scholar]
- Gabrielse, G.; Kalra, R.; Kolthammer, W.S.; McConnell, R.; Richerme, P.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zielinski, M.; Fitzakerley, D.W.; et al. Trapped antihydrogen in its ground state. Phys. Rev. Lett. 2012, 108, 113002. [Google Scholar] [CrossRef] [PubMed]
- Parthey, C.G.; Matveev, A.; Alnis, J.; Bernhardt, B.; Beyer, A.; Holzwarth, R.; Maistrou, A.; Pohl, R.; Predehl, K.; Udem, T.; et al. Improved measurement of the hydrogen 1S–2S transition frequency. Phys. Rev. Lett. 2011, 107, 203001. [Google Scholar] [CrossRef]
- Ahmadi, M.; Alves, B.X.R.; Baker, C.J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C.L.; Charlton, M.; Cohen, S.; et al. Observation of the 1S–2S transition in trapped antihydrogen. Nature 2017, 541, 506–510. [Google Scholar] [CrossRef]
- Ahmadi, M.; Alves, B.X.R.; Baker, C.J.; Bertsche, W.; Capra, A.; Carruth, C.; Cesar, C.L.; Charlton, M.; Cohen, S.; Collister, R.; et al. Characterization of the 1S–2S transition in antihydrogen. Nature 2018, 557, 71–75. [Google Scholar] [CrossRef]
- Matveev, A.; Parthey, C.G.; Predehl, K.; Alnis, J.; Beyer, A.; Holzwarth, R.; Udem, T.; Wilken, T.; Kolachevsky, N.; Abgrall, M.; et al. Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link. Phys. Rev. Lett. 2013, 110, 230801. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Particle Data Group. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Khabarova, K.; Kolachevsky, N. Proton charge radius. Phys. Uspekhi 2021, 64, 1038. [Google Scholar] [CrossRef]
- Pohl, R.; Antognini, A.; Nez, F.; Amaro, F.D.; Biraben, F.; Cardoso, J.M.; Covita, D.S.; Dax, A.; Dhawan, S.; Fernandes, L.M.P.; et al. The size of the proton. Nature 2010, 466, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.J.; Bertsche, W.; Capra, A.; Carruth, C.; Cesar, C.L.; Charlton, M.; Christensen, A.; Collister, R.; Mathad, A.C.; Eriksson, S.; et al. Laser cooling of antihydrogen atoms. Nature 2021, 592, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Petit, P.; Desaintfuscien, M.; Audoin, C. Temperature dependence of the hydrogen maser wall shift in the temperature range 295–395 K. Metrologia 1980, 16, 7. [Google Scholar] [CrossRef]
- Ahmadi, M.; Alves, B.X.R.; Baker, C.J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C.L.; Charlton, M.; Cohen, S.; et al. Observation of the hyperfine spectrum of antihydrogen. Nature 2017, 548, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.E.; Nazaryan, V.; Griffioen, K. Proton structure corrections to electronic and muonic hydrogen hyperfine splitting. Phys. Rev. A 2008, 78, 022517. [Google Scholar] [CrossRef]
- Bezginov, N.; Valdez, T.; Horbatsch, M.; Marsman, A.; Vutha, A.C.; Hessels, E.A. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 2019, 365, 1007–1012. [Google Scholar] [CrossRef]
- Yang, Y.B.; Liang, J.; Bi, Y.J.; Chen, Y.; Draper, T.; Liu, K.F.; Liu, Z. Proton mass decomposition from the QCD energy momentum tensor. Phys. Rev. Lett. 2018, 121, 212001. [Google Scholar] [CrossRef]
- Nieto, M.; Goldman, T. The arguments against “antigravity” and the gravitational acceleration of antimatter. Phys. Rep. 1991, 205, 221–281. [Google Scholar] [CrossRef]
- Adelberger, E.G.; Heckel, B.R.; Stubbs, C.W.; Su, Y. Does antimatter fall with the same acceleration as ordinary matter? Phys. Rev. Lett. 1991, 66, 850. [Google Scholar] [CrossRef]
- Huber, F.M.; Lewis, R.A.; Messerschmid, E.W.; Smith, G.A. Precision tests of Einstein’s Weak Equivalence Principle for antimatter. Adv. Space Res. 2000, 25, 1245–1249. [Google Scholar] [CrossRef]
- Delva, P.; Puchades, N.; Schönemann, E.; Dilssner, F.; Courde, C.; Bertone, S.; Gonzalez, F.; Hees, A.; Le Poncin-Lafitte, C.; Meynadier, F.; et al. Gravitational redshift test using eccentric Galileo satellites. Phys. Rev. Lett. 2018, 121, 231101. [Google Scholar] [CrossRef] [PubMed]
- The ALPHA Collaboration; Charman, A.E. Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Commun. 2013, 4, 1785. [Google Scholar] [PubMed]
- Perez, P.; Banerjee, D.; Biraben, F.; Brook-Roberge, D.; Charlton, M.; Cladé, P.; Comini, P.; Crivelli, P.; Dalkarov, O.; Debu, P.; et al. The GBAR antimatter gravity experiment. Hyperfine Interact. 2015, 233, 21–27. [Google Scholar] [CrossRef]
- So, C.; Fajans, J.; Bertsche, W. The ALPHA-g antihydrogen gravity magnet system. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Schwingenheuer, B.; Briere, R.A.; Barker, A.R.; Cheu, E.; Gibbons, L.K.; Harris, D.A.; Makoff, G.; McFarl, K.S.; Roodman, A.; Wah, Y.W.; et al. CPT tests in the neutral kaon system. Phys. Rev. Lett. 1995, 74, 4376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khabarova, K.; Golovizin, A.; Kolachevsky, N. Antihydrogen and Hydrogen: Search for the Difference. Symmetry 2023, 15, 1603. https://doi.org/10.3390/sym15081603
Khabarova K, Golovizin A, Kolachevsky N. Antihydrogen and Hydrogen: Search for the Difference. Symmetry. 2023; 15(8):1603. https://doi.org/10.3390/sym15081603
Chicago/Turabian StyleKhabarova, Ksenia, Artem Golovizin, and Nikolay Kolachevsky. 2023. "Antihydrogen and Hydrogen: Search for the Difference" Symmetry 15, no. 8: 1603. https://doi.org/10.3390/sym15081603
APA StyleKhabarova, K., Golovizin, A., & Kolachevsky, N. (2023). Antihydrogen and Hydrogen: Search for the Difference. Symmetry, 15(8), 1603. https://doi.org/10.3390/sym15081603