A Free Convective Two-Phase Flow of Optically Thick Radiative Ternary Hybrid Nanofluid in an Inclined Symmetrical Channel through a Porous Medium
Abstract
:1. Introduction
- (i)
- The two-phase flow of ternary hybrid nanofluids with various nanoparticle morphologies with viscous dissipation and natural convection.
- (ii)
- The effect of thermal radiation on porous medium is incorporated.
- (iii)
- In order to increase heat transfer, we used PEG water (50%:50%) containing spherical ZrO2 nanoparticles, platelet-shaped MgO nanoparticles, and CNTs.
2. Mathematical Formulation
2.1. Governing Equations
2.2. Thermophysical Properties
2.3. Non-Dimensional Parameters for Region-I and II
3. Method of Solution
Physical Quantities
4. Results and Discussions
5. Validation of Results
6. Conclusions
- The region of ternary hybrid nanofluids exhibits improved heat transmission relative to the region of clear fluids.
- Thermal buoyancy forces and kinetic energy generated by viscous dissipation are responsible for enhancing fluid temperature, but the porosity and radiation parameters reverse this tendency.
- Due to buoyancy and viscous forces, the velocity of clear fluid increases more than that of ternary hybrid nanofluids. Conversely, the fluid’s velocity is lowered by thermal radiation and porosity factors.
- An increase in the volume of ZrO2 nanoparticles enhances fluid temperature and velocity. In contrast, a rise in the volume fraction of MgO and CNTs reduces fluid temperature and velocity due to the nature of the materials.
- In comparison to plate , plate shows the highest rate of heat transmission. The heat from the plate is consequently transferred to the fluid.
- There is more resistance to flow with the fluid with the plate than with the plate .
- A decrease in nanoparticle volume fraction from 5% to 1% with different combinations increased the heat transfer rate from 10% to 42% at . But heat transfer enhancement of 753.82% is observed at .
- With increasing and , the total heat rate and volumetric flow rate added to the flow increase.
- The ternary nanofluids can increase the heat transfer potential.
- The aforementioned conclusions have some theoretically guiding implications for oil recovery systems, heat exchangers, thermal energy storage, nuclear reactor cooling, and high-temperature industrial processes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Thermal Grashof number | Radiation parameter |
Brinkman number | Acceleration due to gravity |
Thermal conductivity | Velocity of the fluid |
Radiative heat flux | Shape factor |
Permeability | –Specific heat |
Pressure | Polyethylene glycol-water |
Zirconium oxide | Magnesium oxide |
Nusselt number | Skin friction |
Single-walled carbon nanotube | |
Greek Symbols | |
Porosity Parameter | volume fraction of ZrO2 |
volume fraction of MgO | volume fraction of SWCNT |
Thermal expansion coefficient | Sphericity |
Stefan-Boltzmann constant | the mean absorption coefficient. |
Viscosity | Density |
Subscripts: | |
Fluid | Nanoparticle |
Nanofluid | Base fluid |
ZrO–PEG Nanofluid | MgO–PEG Nanofluid |
SWCNT–PEG Nanofluid | Ternary hybrid nanofluid |
Appendix A
References
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab. (ANL): Argonne, IL, USA, 1995. [Google Scholar]
- Turcu, R.; Darabont, A.L.; Nan, A.; Aldea, N.; Macovei, D.; Bica, D.; Vekas, L.; Pana, O.; Soran, M.L.; Koos, A.A. New Polypyrrole-Multiwall Carbon Nanotubes Hybrid Materials. J. Optoelectron. Adv. Mater. 2006, 8, 643–647. [Google Scholar]
- Jana, S.; Salehi-Khojin, A.; Zhong, W.-H. Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-Additives. Thermochim. Acta 2007, 462, 45–55. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3–Cu/Water Hybrid Nanofluids Using Two Step Method and Its Thermo Physical Properties. Colloids Surf. Physicochem. Eng. Asp. 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Chen, X.; Jian, Y. Entropy Generation Minimization Analysis of Two Immiscible Fluids. Int. J. Therm. Sci. 2022, 171, 107210. [Google Scholar] [CrossRef]
- Hisham, M.D.; Rauf, A.; Vieru, D.; Awan, A.U. Analytical and Semi-Analytical Solutions to Flows of Two Immiscible Maxwell Fluids between Moving Plates. Chin. J. Phys. 2018, 56, 3020–3032. [Google Scholar] [CrossRef]
- Yadav, P.K.; Kumar, A. An Inclined Magnetic Field Effect on Entropy Production of Non-Miscible Newtonian and Micropolar Fluid in a Rectangular Conduit. Int. Commun. Heat Mass Transf. 2021, 124, 105266. [Google Scholar] [CrossRef]
- Mallikarjuna, B.; Bhatta, S.S.; Ramprasad, S. Velocity and Thermal Slip Effects on MHD Convective Radiative Two-Phase Flows in an Asymmetric Non-Uniform Channel. Propuls. Power Res. 2021, 10, 169–179. [Google Scholar] [CrossRef]
- Zeeshan, A.; Shehzad, N.; Atif, M.; Ellahi, R.; Sait, S.M. Electromagnetic Flow of SWCNT/MWCNT Suspensions in Two Immiscible Water-and Engine-Oil-Based Newtonian Fluids through Porous Media. Symmetry 2022, 14, 406. [Google Scholar] [CrossRef]
- Umavathi, J.C.; Bég, O.A. Effects of Thermophysical Properties on Heat Transfer at the Interface of Two Immisicible Fluids in a Vertical Duct: Numerical Study. Int. J. Heat Mass Transf. 2020, 154, 119613. [Google Scholar] [CrossRef]
- Dogonchi, A.S.; Chamkha, A.J.; Seyyedi, S.M.; Ganji, D.D. Radiative Nanofluid Flow and Heat Transfer between Parallel Disks with Penetrable and Stretchable Walls Considering Cattaneo–Christov Heat Flux Model. Heat Transfer—Asian Res. 2018, 47, 735–753. [Google Scholar] [CrossRef]
- Rahim, T.; Hasnain, J.; Abid, N.; Abbas, Z. Entropy Generation for Mixed Convection Flow in Vertical Annulus with Two Regions Hydromagnetic Viscous and Cu-Ag Water Hybrid Nanofluid through Porous Zone: A Comparative Numerical Study. Propuls. Power Res. 2022, 11, 401–415. [Google Scholar] [CrossRef]
- Yaseen, M.; Rawat, S.K.; Shafiq, A.; Kumar, M.; Nonlaopon, K. Analysis of Heat Transfer of Mono and Hybrid Nanofluid Flow between Two Parallel Plates in a Darcy Porous Medium with Thermal Radiation and Heat Generation/Absorption. Symmetry 2022, 14, 1943. [Google Scholar] [CrossRef]
- Pattnaik, P.K.; Pattnaik, J.R.; Mishra, S.R.; Nisar, K.S. Variation of the Shape of Fe 3 O 4-Nanoparticles on the Heat Transfer Phenomenon with the Inclusion of Thermal Radiation. J. Therm. Anal. Calorim. 2021, 1–12. [Google Scholar]
- Khan, U.; Zaib, A.; Ishak, A.; Sherif, E.-S.M.; Waini, I.; Chu, Y.-M.; Pop, I. Radiative Mixed Convective Flow Induced by Hybrid Nanofluid over a Porous Vertical Cylinder in a Porous Media with Irregular Heat Sink/Source. Case Stud. Therm. Eng. 2022, 30, 101711. [Google Scholar] [CrossRef]
- Upreti, H.; Pandey, A.K.; Kumar, M. Unsteady Squeezing Flow of Magnetic Hybrid Nanofluids within Parallel Plates and Entropy Generation. Heat Transf. 2021, 50, 105–125. [Google Scholar] [CrossRef]
- Masood, S.; Farooq, M. Influence of Thermal Stratification and Thermal Radiation on Graphene Oxide-Ag/H 2 O Hybrid Nanofluid. J. Therm. Anal. Calorim. 2021, 143, 1361–1370. [Google Scholar] [CrossRef]
- Xiong, P.-Y.; Nazeer, M.; Hussain, F.; Khan, M.I.; Saleem, A.; Qayyum, S.; Chu, Y.-M. Two-Phase Flow of Couple Stress Fluid Thermally Effected Slip Boundary Conditions: Numerical Analysis with Variable Liquids Properties. Alex. Eng. J. 2022, 61, 3821–3830. [Google Scholar] [CrossRef]
- Ge-JiLe, H.; Nazeer, M.; Hussain, F.; Khan, M.I.; Saleem, A.; Siddique, I. Two-Phase Flow of MHD Jeffrey Fluid with the Suspension of Tiny Metallic Particles Incorporated with Viscous Dissipation and Porous Medium. Adv. Mech. Eng. 2021, 13, 16878140211005960. [Google Scholar] [CrossRef]
- Wakif, A.; Boulahia, Z.; Ali, F.; Eid, M.R.; Sehaqui, R. Numerical Analysis of the Unsteady Natural Convection MHD Couette Nanofluid Flow in the Presence of Thermal Radiation Using Single and Two-Phase Nanofluid Models for Cu–Water Nanofluids. Int. J. Appl. Comput. Math. 2018, 4, 81. [Google Scholar] [CrossRef]
- Xiong, Q.; Tayebi, T.; Izadi, M.; Siddiqui, A.A.; Ambreen, T.; Li, L.K. Numerical Analysis of Porous Flat Plate Solar Collector under Thermal Radiation and Hybrid Nanoparticles Using Two-Phase Model. Sustain. Energy Technol. Assess. 2021, 47, 101404. [Google Scholar] [CrossRef]
- Al-Hossainy, A.F.; Eid, M.R. Combined Experimental Thin Films, TDDFT-DFT Theoretical Method, and Spin Effect on [PEG-H2O/ZrO2 + MgO] h Hybrid Nanofluid Flow with Higher Chemical Rate. Surf. Interfaces 2021, 23, 100971. [Google Scholar] [CrossRef]
- Al-Hossainy, A.F.; Eid, M.R. Combined Theoretical and Experimental DFT-TDDFT and Thermal Characteristics of 3-D Flow in Rotating Tube of [PEG+ H2O/SiO2-Fe3O4] C Hybrid Nanofluid to Enhancing Oil Extraction. Waves Random Complex Media 2021, 1–26. [Google Scholar] [CrossRef]
- Babu, M.J.; Rao, Y.S.; Kumar, A.S.; Raju, C.S.K.; Shehzad, S.A.; Ambreen, T.; Shah, N.A. Squeezed Flow of Polyethylene Glycol and Water Based Hybrid Nanofluid over a Magnetized Sensor Surface: A Statistical Approach. Int. Commun. Heat Mass Transf. 2022, 135, 106136. [Google Scholar] [CrossRef]
- Murshid, N.; Mulki, H.; Abu-Samha, M.; Owhaib, W.; Raju, S.S.K.; Raju, C.S.; JayachandraBabu, M.; Homod, R.Z.; Al-Kouz, W. Entropy Generation and Statistical Analysis of MHD Hybrid Nanofluid Unsteady Squeezing Flow between Two Parallel Rotating Plates with Activation Energy. Nanomaterials 2022, 12, 2381. [Google Scholar] [CrossRef]
- Ahmad, S.; Nadeem, S. Thermal Analysis in Buoyancy Driven Flow of Hybrid Nanofluid Subject to Thermal Radiation. Int. J. Ambient Energy 2022, 43, 3868–3876. [Google Scholar] [CrossRef]
- Rana, P.; Kumar, A. Nonlinear Buoyancy Driven Flow of Hybrid Nanoliquid Past a Spinning Cylinder with Quadratic Thermal Radiation. Int. Commun. Heat Mass Transf. 2022, 139, 106439. [Google Scholar] [CrossRef]
- Adun, H.; Kavaz, D.; Dagbasi, M. Review of Ternary Hybrid Nanofluid: Synthesis, Stability, Thermophysical Properties, Heat Transfer Applications, and Environmental Effects. J. Clean. Prod. 2021, 328, 129525. [Google Scholar] [CrossRef]
- Shamshuddin, M.D.; Akkurt, N.; Saeed, A.; Kumam, P. Radiation Mechanism on Dissipative Ternary Hybrid Nanoliquid Flow through Rotating Disk Encountered by Hall Currents: HAM Solution. Alex. Eng. J. 2023, 65, 543–559. [Google Scholar] [CrossRef]
- Younis, O.; Abderrahmane, A.; Hatami, M.; Mourad, A.; Kamel, G. Thermal Energy Storage Using Nano Phase Change Materials in Corrugated Plates Heat Exchangers with Different Geometries. J. Energy Storage 2022, 55, 105785. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Hatami, M.; Medebber, M.A.; Haroun, S.; Ahmed, S.E.; Mohammed, S. Non-Newtonian Nanofluid Natural Convective Heat Transfer in an Inclined Half-Annulus Porous Enclosure Using FEM. Alex. Eng. J. 2022, 61, 5441–5453. [Google Scholar] [CrossRef]
- Ghadikolaei, S.S.; Hosseinzadeh, K.; Hatami, M.; Ganji, D.D.; Armin, M. Investigation for Squeezing Flow of Ethylene Glycol (C2H6O2) Carbon Nanotubes (CNTs) in Rotating Stretching Channel with Nonlinear Thermal Radiation. J. Mol. Liq. 2018, 263, 10–21. [Google Scholar] [CrossRef]
- Pavithra, K.M.; Hanumagowda, B.N.; Raju, S.S.K.; Varma, S.V.K.; Murshid, N.; Mulki, H.; Al-Kouz, W. Thermal Radiation and Mass Transfer Analysis in an Inclined Channel Flow of a Clear Viscous Fluid and H2O/EG-Based Nanofluids through a Porous Medium. Sustainability 2023, 15, 4342. [Google Scholar] [CrossRef]
- Pavithra, K.M.; Hanumagowda, B.N.; Varma, S.V.K.; Ahammad, N.A.; Raju, C.S.K.; Noeiaghdam, S. The Impacts of Shape Factors in a Chemically Reacting Two-Passage Vertical Channel Filled with Kerosene Based Graphene Oxide and MoS2 Mixture in a Porous Medium. Results Eng. 2023, 18, 101050. [Google Scholar] [CrossRef]
- Sarada, K.; Gamaoun, F.; Abdulrahman, A.; Paramesh, S.O.; Kumar, R.; Prasanna, G.D.; Gowda, R.P. Impact of Exponential Form of Internal Heat Generation on Water-Based Ternary Hybrid Nanofluid Flow by Capitalizing Non-Fourier Heat Flux Model. Case Stud. Therm. Eng. 2022, 38, 102332. [Google Scholar]
- Bilal, M.; Ahmed, A.E.-S.; El-Nabulsi, R.A.; Ahammad, N.A.; Alharbi, K.A.M.; Elkotb, M.A.; Anukool, W.; SA, Z.A. Numerical Analysis of an Unsteady, Electroviscous, Ternary Hybrid Nanofluid Flow with Chemical Reaction and Activation Energy across Parallel Plates. Micromachines 2022, 13, 874. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, R.R. Heat Transfer and Second Law Characteristics of Radiator with Dissimilar Shape Nanoparticle-Based Ternary Hybrid Nanofluid. J. Therm. Anal. Calorim. 2021, 146, 827–839. [Google Scholar] [CrossRef]
- Sahu, M.; Sarkar, J. Steady-State Energetic and Exergetic Performances of Single-Phase Natural Circulation Loop with Hybrid Nanofluids. J. Heat Transf. 2019, 141, 082401. [Google Scholar] [CrossRef]
- Arif, M.; Kumam, P.; Kumam, W.; Mostafa, Z. Heat Transfer Analysis of Radiator Using Different Shaped Nanoparticles Water-Based Ternary Hybrid Nanofluid with Applications: A Fractional Model. Case Stud. Therm. Eng. 2022, 31, 101837. [Google Scholar] [CrossRef]
- Keerthana, L.; Sakthivel, C.; Prabha, I. MgO-ZrO2 Mixed Nanocomposites: Fabrication Methods and Applications. Mater. Today Sustain. 2019, 3, 100007. [Google Scholar] [CrossRef]
- Matizamhuka, W.R. Spark Plasma Sintering (SPS)-an Advanced Sintering Technique for Structural Nanocomposite Materials. J. S. Afr. Inst. Min. Metall. 2016, 116, 1171–1180. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Miroshnichenko, I.V.; Sheremet, M.A. Numerical Analysis of Unsteady Conjugate Natural Convection of Hybrid Water-Based Nanofluid in a Semicircular Cavity. J. Therm. Sci. Eng. Appl. 2017, 9, 041004. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Routbort, J.L.; Singh, D. Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids. J. Appl. Phys. 2009, 106. [Google Scholar] [CrossRef]
- Vold, R.D.; Vold, M.J. Colloid and Interface Chemistry; Addison-Wesley: Boston, MA, USA, 1983. [Google Scholar]
- Rosseland, S. Theoretical Astrophysics; Oxford University Press: London, UK, 1936. [Google Scholar]
- Siegel, R.; Howell, J.R. Thermal Radiation Heat Transfer, 3rd ed.; Hemisphere: Washington, WA, USA, 1936. [Google Scholar]
- Malashetty, M.S.; Umavathi, J.C.; Kumar, J.P. Magnetoconvection of Two-Immiscible Fluids in Vertical Enclosure. Heat Mass Transf. 2006, 42, 977–993. [Google Scholar] [CrossRef]
- Umavathi, J.C.; Hemavathi, K. Flow and Heat Transfer of Composite Porous Medium Saturated with Nanofluid. Propuls. Power Res. 2019, 8, 173–181. [Google Scholar] [CrossRef]
- Das, S.; Guchhait, S.K.; Jana, R.N. Radiation Effects on Unsteady MHD Free Convective Couette Flow of Heat Generation/Absorbing Fluid. Int. J. Comput. Appl. 2012, 39, 42–51. [Google Scholar] [CrossRef]
- Malashetty, M.S.; Umavathi, J.C.; Prathap Kumar, J. Two Fluid Flow and Heat Transfer in an Inclined Channel Containing Porous and Fluid Layer. Heat Mass Transf. 2004, 40, 871–876. [Google Scholar] [CrossRef]
PEG–Water (50%:50%) | 0.3712 | 1110 | 5.8 × 10−4 |
1.7 | 5680 | 10 × 10−6 | |
45 | 3560 | 1.05 × 10−5 | |
SWCNT | 2000 | 2200 | 1.5 × 10−5 |
Shape | Spherical | Platelets | Cylindrical |
---|---|---|---|
Sphericity | 1 | 0.52 | 0.612 |
Shape factor | 3 | 5.7 | 4.9 |
Spherical | Platelet | Cylindrical | Nusselt Number | Percentage Enhancement | ||
---|---|---|---|---|---|---|
Nu1 | Nu2 | Nu1 (%) | Nu2 (%) | |||
0 | 0.05 | 0.05 | 1.5193 | 0.1007 | - | - |
0.05 | 0 | 0.05 | 1.6776 | 0.2863 | 10.42 | 184.31 |
0.05 | 0.05 | 0 | 1.6426 | 0.2478 | 8.11 | 146.07 |
0 | 0.04 | 0.04 | 1.5896 | 0.1887 | 4.63 | 87.39 |
0.04 | 0 | 0.04 | 1.7731 | 0.4003 | 16.71 | 297.51 |
0.04 | 0.04 | 0 | 1.7188 | 0.3408 | 13.13 | 238.4 |
0 | 0.03 | 0.03 | 1.6909 | 0.3126 | 11.29 | 210.42 |
0.03 | 0 | 0.03 | 1.8917 | 0.5395 | 24.51 | 435.75 |
0.03 | 0.03 | 0 | 1.8165 | 0.4580 | 19.56 | 354.81 |
0 | 0.02 | 0.02 | 1.8361 | 0.4854 | 20.85 | 382.02 |
0.02 | 0 | 0.02 | 2.0290 | 0.6990 | 33.55 | 594.14 |
0.02 | 0.02 | 0 | 1.9404 | 0.6041 | 27.72 | 499.90 |
0 | 0.01 | 0.01 | 2.0346 | 0.7158 | 33.92 | 610.82 |
0.01 | 0.01 | 0 | 2.0932 | 0.7815 | 37.77 | 676.06 |
0.01 | 0 | 0.01 | 2.1671 | 0.8598 | 42.64 | 753.82 |
Total Heat Flow (E) | Total Volume Flow (Q) | ||
---|---|---|---|
1 | 0.68231 | 1.003 | |
5 | 1.3387 | 1.5446 | |
10 | 3.0018 | 2.6068 | |
0.1 | 0.6218 | 1.2406 | |
0.5 | 1.3387 | 1.5446 | |
1 | 2.5564 | 1.9245 | |
0.02 | 1.3387 | 1.5446 | |
0.04 | 1.4314 | 1.6153 | |
0.06 | 1.4597 | 1.6343 | |
0.02 | 1.3387 | 1.5446 | |
0.04 | 0.8454 | 1.1277 | |
0.06 | 0.5722 | 0.86752 | |
0.02 | 1.3387 | 1.5446 | |
0.04 | 0.9001 | 1.1759 | |
0.06 | 0.5902 | 0.8850 | |
0.2 | 1.6942 | 1.6677 | |
0.4 | 1.4871 | 1.5975 | |
0.6 | 1.3387 | 1.5446 | |
2 | 3.8869 | 3.1685 | |
4 | 1.3387 | 1.5446 | |
6 | 0.7492 | 1.0715 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavithra, K.M.; Srilatha, P.; Hanumagowda, B.N.; Varma, S.V.K.; Verma, A.; Alkarni, S.; Shah, N.A. A Free Convective Two-Phase Flow of Optically Thick Radiative Ternary Hybrid Nanofluid in an Inclined Symmetrical Channel through a Porous Medium. Symmetry 2023, 15, 1615. https://doi.org/10.3390/sym15081615
Pavithra KM, Srilatha P, Hanumagowda BN, Varma SVK, Verma A, Alkarni S, Shah NA. A Free Convective Two-Phase Flow of Optically Thick Radiative Ternary Hybrid Nanofluid in an Inclined Symmetrical Channel through a Porous Medium. Symmetry. 2023; 15(8):1615. https://doi.org/10.3390/sym15081615
Chicago/Turabian StylePavithra, K. M., Pudhari Srilatha, B. N. Hanumagowda, S. V. K. Varma, Amit Verma, Shalan Alkarni, and Nehad Ali Shah. 2023. "A Free Convective Two-Phase Flow of Optically Thick Radiative Ternary Hybrid Nanofluid in an Inclined Symmetrical Channel through a Porous Medium" Symmetry 15, no. 8: 1615. https://doi.org/10.3390/sym15081615
APA StylePavithra, K. M., Srilatha, P., Hanumagowda, B. N., Varma, S. V. K., Verma, A., Alkarni, S., & Shah, N. A. (2023). A Free Convective Two-Phase Flow of Optically Thick Radiative Ternary Hybrid Nanofluid in an Inclined Symmetrical Channel through a Porous Medium. Symmetry, 15(8), 1615. https://doi.org/10.3390/sym15081615