Projective Collineations in Warped Product Manifolds and (PRS)n Manifolds
Abstract
:1. Introduction
2. Projective Collineations
3. Warped Product Manifolds
4. Projective Collineation on Warped Product Manifolds
- 1.
- ,
- 2.
- ,
- 3.
- or f is constant.
- 1.
- The component is a projective collineation on the base manifold, that is,
- 2.
- The component is an affine collineation on the fiber manifold ,
- 3.
- The warping function is constant; otherwise, vanishes,
- 4.
- The component of P tangential to vanishes,
- 5.
- The component of P tangential to vanishes; otherwise, f is constant.
- 1.
- The associated vector field P vanishes, that is, ζ is an affine collineation,
- 2.
- The component is an affine collineation on the factor manifold
- 3.
- The component vanishes.
5. Pseudo-Ricci Symmetric Manifolds
6. Pseudo-Ricci Symmetric Spacetimes with RCI and PC Vector Field
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aazami, A.B.; Ream, R. Killing vector fields on Riemannian and Lorentzian 3-manifolds. Math. Nachrichten 2023, in press. [Google Scholar] [CrossRef]
- Duggal, K.L.; Sharma, R. Symmetries of Spacetimes and Riemannian Manifolds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 487. [Google Scholar]
- Hall, G.S. Symmetries and Curvature Structure in General Relativity; World Scientific: Singapore, 2004; Volume 46. [Google Scholar]
- Besse, A.L. Classics in Mathematics. In Einstein Manifolds; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- De, U.C.; Shenawy, S.; Syied, A.A. GRAY’s Decomposition and Warped Product of Generalized Ricci Recurrent Spacetimes. Rep. Math. Phys. 2023, 91, 103–116. [Google Scholar]
- De, U.C.; Murathan, C.; Ozgur, C. Pseudo symmetric and pseudo Ricci symmetric warped product manifolds. Commun. Korean Math. Soc. 2010, 25, 615–621. [Google Scholar] [CrossRef]
- Tamássy, L.; Binh, T.Q. On weak symmetries of Einstein and Sasakian manifolds. Tensor NS 1993, 53, 140–148. [Google Scholar]
- De, U.C.; Gazi, A. On pseudo Ricci symmetric manifolds. Anal. Stiint. Univ. AL.I. Cuza. IASI (S.N.) Tom LVIII 2012, 209–222. [Google Scholar] [CrossRef]
- Chaki, M.C. On pseudo Ricci symmetric manifolds. Bulg. J. Phys. 1988, 15, 526–531. [Google Scholar]
- Ozen, F.; Altay, S. On weakly and pseudo-symmetric Riemannian spaces. Indian J. Pure Appl. Math. 2002, 33, 1477–1488. [Google Scholar]
- Li, Y.; Gezer, A.; Karakaş, E. Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Math. 2023, 8, 17335–17353. [Google Scholar] [CrossRef]
- Li, Y.; Bhattacharyya, S.; Azami, S.; Saha, A.; Hui, S.K. Harnack Estimation for Nonlinear, Weighted, Heat-Type Equation along Geometric Flow and Applications. Mathematics 2023, 11, 2516. [Google Scholar] [CrossRef]
- Li, Y.; Kumara, H.A.; Siddesha, M.S.; Naik, D.M. Characterization of Ricci Almost Soliton on Lorentzian Manifolds. Symmetry 2023, 15, 1175. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E. A Hypersurfaces of Revolution Family in the Five-Dimensional Pseudo-Euclidean Space . Mathematics 2023, 11, 3427. [Google Scholar] [CrossRef]
- Li, Y.; Gupta, M.K.; Sharma, S.; Chaubey, S.K. On Ricci Curvature of a Homogeneous Generalized Matsumoto Finsler Space. Mathematics 2023, 11, 3365. [Google Scholar] [CrossRef]
- Li, Y.; Srivastava, S.K.; Mofarreh, F.; Kumar, A.; Ali, A. Ricci Soliton of CR-Warped Product Manifolds and Their Classifications. Symmetry 2023, 15, 976. [Google Scholar] [CrossRef]
- Li, Y.; Mak, M. Framed Natural Mates of Framed Curves in Euclidean 3-Space. Mathematics 2023, 11, 3571. [Google Scholar] [CrossRef]
- Antić, M.; Hu, Z.; Moruz, M.; Vrancken, L. Surfaces of the nearly Kähler preserved by the almost product structure. Math. Nachr. 2021, 294, 2286–2301. [Google Scholar] [CrossRef]
- Antić, M. Characterization of Warped Product Lagrangian Submanifolds in . Results Math. 2022, 77, 106. [Google Scholar] [CrossRef]
- Antić, M.; Vrancken, L. Conformally flat, minimal, Lagrangian submanifolds in complex space forms. Sci. China Math. 2022, 65, 1641–1660. [Google Scholar] [CrossRef]
- Borges, V.; Tenenblat, K. Ricci almost solitons on semi-Riemannian warped products. Math. Nachrichten 2022, 295, 22–43. [Google Scholar] [CrossRef]
- Sánchez, M. On the Geometry of Generalized Robertson-Walker Spacetimes: Curvature and Killing fields. J. Geom. Phys. 1999, 31, 1–15. [Google Scholar] [CrossRef]
- Sánchez, M. On the Geometry of Generalized Robertson-Walker Spacetimes: Geodesics. Gen. Relativ. Gravit. 1998, 30, 915–932. [Google Scholar] [CrossRef]
- Shenawy, S.; De, U.C.; Bin Turki, N. A Note on the Geometry of RW Space-Times. Mathematics 2023, 11, 1440. [Google Scholar] [CrossRef]
- Allison, D.E. Geodesic completeness in static spacetimes. Geom. Dedicata 1988, 26, 85–97. [Google Scholar] [CrossRef]
- Allison, D.E. Energy conditions in standard static space-times. Gen. Relativ. Gravit. 1988, 20, 115–122. [Google Scholar] [CrossRef]
- Allison, D.E.; Ünal, B. Geodesic Structure of Standard Static Space-times. J. Geom. Phys. 2003, 46, 193–200. [Google Scholar] [CrossRef]
- Bin Turki, N.; Shenawy, S.; El-Sayied, H.K.; Syied, N.; Mantica, C.A. ρ-Einstein Solitons on Warped Product Manifolds and Applications. J. Math. 2022, 2022, 1028339. [Google Scholar] [CrossRef]
- De, U.C.; El-Sayied, H.K.; Syied, N.; Shenawy, S. Mixed generalized quasi-Einstein Warped product manifolds. Bull. Iran. Math. Soc. 2022, 48, 1311–1324. [Google Scholar] [CrossRef]
- Dirmeier, A.; Scherfner, M.; Shenawy, S.; ÜnAL, B. Jacobi vector fields and conjugate points on warped product manifolds. Rep. Math. 2023, 91, 409–422. [Google Scholar] [CrossRef]
- Mantica, C.A.; Suh, Y.J.; De, U.C. A note on generalized Robertson—Walker space-times. Int. J. Geom. Methods Mod. Phys. 2016, 13, 1650079. [Google Scholar] [CrossRef]
- Shenawy, S.; De, U.C.; Turki, N.B.; Syied, A.A. A study of almost pseudo Z symmetric spacetimes with application to f(R) gravity. Int. Geom. Methods Mod. Phys. 2022, 19, 2250163. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenawy, S.; De, U.C.; Bin Turki, N.; Pundeer, N.A. Projective Collineations in Warped Product Manifolds and (PRS)n Manifolds. Symmetry 2023, 15, 1644. https://doi.org/10.3390/sym15091644
Shenawy S, De UC, Bin Turki N, Pundeer NA. Projective Collineations in Warped Product Manifolds and (PRS)n Manifolds. Symmetry. 2023; 15(9):1644. https://doi.org/10.3390/sym15091644
Chicago/Turabian StyleShenawy, Sameh, Uday Chand De, Nasser Bin Turki, and Naeem Ahmad Pundeer. 2023. "Projective Collineations in Warped Product Manifolds and (PRS)n Manifolds" Symmetry 15, no. 9: 1644. https://doi.org/10.3390/sym15091644
APA StyleShenawy, S., De, U. C., Bin Turki, N., & Pundeer, N. A. (2023). Projective Collineations in Warped Product Manifolds and (PRS)n Manifolds. Symmetry, 15(9), 1644. https://doi.org/10.3390/sym15091644