Bayes Estimation for the Rayleigh–Weibull Distribution Based on Progressive Type-II Censored Samples for Cancer Data in Medicine
Abstract
:1. Introduction
2. Maximum Likelihood Estimation
2.1. Asymptotic Confidence Interval (ACI)
2.2. Bootstrap Confidence Interval
3. Bayes Estimation
3.1. Lindley’s Approximation
3.2. Tierney–Kadane Approximation
3.3. Markov Chain Monte Carlo (MCMC)
4. Simulation Study
- Let be m-sized samples generated from the distribution.
- is defined by replacing .
- is obtained by replacing .
5. Real Data Analysis
0.08 | 0.2 | 0.4 | 0.5 | 0.51 | 0.81 | 0.9 | 1.05 | 1.19 | 1.26 | 1.35 | 1.4 | 1.46 | 1.76 | 2.02 | 2.02 |
2.07 | 2.09 | 2.23 | 2.26 | 2.46 | 2.54 | 2.62 | 2.64 | 2.69 | 2.69 | 2.75 | 2.83 | 2.87 | 3.02 | 3.25 | 3.31 |
3.36 | 3.36 | 3.48 | 3.52 | 3.57 | 3.64 | 3.7 | 3.82 | 3.88 | 4.18 | 4.23 | 4.26 | 4.33 | 4.34 | 4.4 | 4.5 |
4.51 | 4.87 | 4.98 | 5.06 | 5.09 | 5.17 | 5.32 | 5.32 | 5.34 | 5.41 | 5.41 | 5.49 | 5.62 | 5.71 | 5.85 | 6.25 |
6.31 | 6.54 | 6.76 | 6.93 | 6.94 | 6.97 | 7.09 | 7.26 | 7.28 | 7.32 | 7.39 | 7.59 | 7.62 | 7.63 | 7.66 | 7.87 |
7.93 | 8.26 | 8.37 | 8.53 | 8.65 | 8.66 | 9.02 | 9.22 | 9.47 | 9.74 | 10.06 | 10.34 | 10.66 | 10.75 | 11.25 | 11.64 |
11.79 | 11.98 | 12.02 | 12.03 | 12.07 | 12.63 | 13.11 | 13.29 | 13.8 | 14.24 | 14.76 | 14.77 | 14.83 | 15.96 | 16.62 | 17.12 |
17.14 | 17.36 | 18.1 | 19.13 | 20.28 | 21.73 | 22.69 | 23.63 | 25.74 | 25.82 | 32.15 | 34.26 | 36.66 | 43.01 | 46.12 | 79.05 |
24 | 46 | 57 | 57 | 64 | 65 | 82 | 89 | 90 | 90 | 111 | 117 | 128 | 143 | 148 | 152 |
166 | 171 | 186 | 191 | 197 | 209 | 223 | 230 | 239 | 247 | 254 | 264 | 269 | 273 | 284 | 294 |
304 | 304 | 332 | 341 | 393 | 395 | 487 | 510 | 516 | 518 | 518 | 534 | 608 | 642 | 697 | 955 |
1160 |
12.20 | 23.56 | 23.74 | 25.87 | 31.98 | 37 | 41.35 | 47.38 | 55.46 | 58.36 | 63.47 | 68.46 | 78.26 | 74.47 | 81 | 43 |
84 | 92 | 94 | 110 | 112 | 119 | 127 | 130 | 133 | 140 | 146 | 155 | 159 | 173 | 179 | 194 |
195 | 209 | 249 | 281 | 319 | 339 | 432 | 469 | 519 | 633 | 725 | 817 | 1776 |
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rayleigh, J.W.S. On the resultant of a large number of vibrations of the some pitch and of arbitrary phase. Phil. Mag. Ser. 5 1880, 10, 73–78. [Google Scholar] [CrossRef]
- Sindhua, T.N.; Aslama, M.; Ferozeb, N. Bayes estimation of the parameters of the inverse Rayleigh distribution for left censored data. ProbStat Forum 2013, 6, 42–59. [Google Scholar]
- Dey, S.; Dey, T. Statistical inference for the Rayleigh distribution under progressively Type-II censoring with binomial removal. Appl. Math. Model. 2014, 38, 974–982. [Google Scholar] [CrossRef]
- EL-Sagheer, R.M.; Ahsanullah, M. Bayesian estimation based on progressively Type-II censored samples from compound Rayleigh distribution. J. Stat. Theory Appl. 2015, 14, 107–122. [Google Scholar] [CrossRef]
- Dey, T.; Dey, S.; Debasis Kundu, D. On progressively Type-II censored two-parameter Rayleigh distribution. Commun. Stat.—Simul. Comput. 2016, 45, 438–455. [Google Scholar] [CrossRef]
- Fan, J.; Gui, W. Statistical inference of inverted exponentiated Rayleigh distribution under joint progressively type-II censoring. Entropy 2022, 24, 171. [Google Scholar] [CrossRef]
- Shen, B.; Chen, W.; Zhou, Y.; Cuihong Deng, C. Sampling information for generalized Rayleigh distribution with application to parameter estimation. Iran. J. Sci. 2023, 47, 515–529. [Google Scholar] [CrossRef]
- Zamanzade, E.; Mahdizadeh, M. Goodness of fit tests for Rayleigh distribution based on Phi-diveence. Rev. Colomb. Estadística 2017, 40, 279–290. [Google Scholar]
- Smadi, M.M.; Alrefaei, M.H. New extensions of Rayleigh distribution based on inverted-Weibull and Weibull distributions. Int. J. Electr. Comput. Eng. 2021, 11, 5107–5118. [Google Scholar] [CrossRef]
- Kundu, D.; Gupta, A.K. Bayes estimation for the Marshall–Olkin bivariate Weibull distribution. Comput. Stat. Data Anal. 2013, 57, 271–281. [Google Scholar] [CrossRef]
- Almongy, H.M.; Almetwally, E.M.; Aljohani, H.M.; Alghamdi, A.S.; Hafez, E.H. A new extended Rayleigh distribution with applications of COVID-19 data. Results Phys. 2021, 23, 104012. [Google Scholar] [CrossRef]
- Xie, Y.; Gui, W. Statistical inference of the lifetime performance index with the log-logistic distribution based on progressive first-failure-censored data. Symmetry 2020, 12, 937. [Google Scholar] [CrossRef]
- Cai, Y.; Gui, W. Classical and Bayesian inference for a progressive first-failure censored left-truncated Normal distribution. Symmetry 2021, 13, 490. [Google Scholar] [CrossRef]
- Jiang, H.; Gui, W. Bayesian inference for the parameters of Kumaraswamy distribution via ranked set sampling. Symmetry 2021, 13, 1170. [Google Scholar] [CrossRef]
- Balakrishnan, N. Progressive censoring methodology: An appraisal. TEST 2007, 16, 211–259. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods and Applications; Birkhauser: Boston, MA, USA, 2000. [Google Scholar]
- Ali Mousa, M.A.M.; Jaheen, Z.F. Statistical inference for the Burr model based on progressively censored data. Comput. Math. Appl. 2002, 43, 1441–1449. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Kannan, N.; Lin, C.T.; Wu, S.J.S. Inference for the extreme value distribution under progressive Type-II censoring. J. Stat. Comput. Simul. 2004, 74, 25–45. [Google Scholar] [CrossRef]
- Ali Mousa, M.A.M.; Al-Sagheer, S.A. Statistical inference for the Rayleigh model based on progressively Type-II censored data. Statistics 2006, 40, 149–157. [Google Scholar] [CrossRef]
- Wu, S.-J.; Chen, D.-H.; Chen, S.-T. Bayesian inference for Rayleigh distribution under progressive censored sample. Appl. Stoch. Models Bus. Ind. 2006, 22, 269–279. [Google Scholar] [CrossRef]
- Panahi, H.; Asadi, S. Estimation of the Weibull distribution based on Type-II censored samples. Appl. Math. Sci. 2011, 52, 2549–2558. [Google Scholar]
- Aljuaid, A. Estimating the parameters of an exponentiated inverted Weibull distribution under Type-II censoring. Appl. Math. Sci. 2013, 7, 1721–1736. [Google Scholar] [CrossRef]
- Ahmed, E.A. Estimation of some lifetime parameters of generalized Gompertz distribution under progressively Type-II censored data. Appl. Math. Model. 2015, 39, 5567–5578. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, U.; Kumar, M. Bayesian estimation for Poisson-exponential model under progressive Type-II censoring data with binomial removal and its application to ovarian cancer data. Commun. Stat.-Simul. Comput. 2016, 45, 3457–3475. [Google Scholar] [CrossRef]
- Liao, H.; Gui, W. Statistical inference of the Rayleigh distribution based on progressively Type II censored competing risks data. Symmetry 2019, 11, 898. [Google Scholar] [CrossRef]
- Abbas, K.; Hussain, Z.; Rashid, N.; Ali, A.; Taj, M.; Khan, S.A.; Manzoor, S.; Khalil, U.; Khan, D.M. Bayesian estimation of Gumbel Type-II distribution under Type-II censoring with medical applications. Hindawi Comput. Math. Methods Med. 2020, 11, 1876073. [Google Scholar] [CrossRef]
- Sultan, K.S.; Alsadat, N.H.; Kundu, D. Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive Type-II censoring. J. Stat. Comput. Simul. 2014, 10, 2248–2265. [Google Scholar] [CrossRef]
- Alshenawy, R.; Al-Alwan, A.; Almetwally, E.M.; Aafify, A.Z.; Almongy, H.M. Progressive Type-II censoring schemes of extended odd Weibull exponential Distribution with applications in medicine and engineering. Mathematics 2020, 8, 1679. [Google Scholar] [CrossRef]
- Mukhtar, S.M. On progressive Type-II censored samples from alpha power exponential distribution. Mathematics 2020, 8, 1679. [Google Scholar]
- Wu, M.; Gui, W. Estimation and prediction for Nadarajah-Haghighi distribution under progressive Type-II censoring. Symmetry 2021, 13, 999. [Google Scholar] [CrossRef]
- Almongy, H.M.; Almetwally, E.M.; Alharbi, R.; Alnagar, D.; Hafez, E.H.; El-Din, M.M. The Weibull generalized exponential distribution with censored sample: Estimation and application on real data. Hindawi Complex. 2020, 15, 6653534. [Google Scholar] [CrossRef]
- Qiao, Y.; Gui, W. Statistical inference of weighted exponential distribution under joint progressive Type-II censoring. Symmetry 2022, 14, 2031. [Google Scholar] [CrossRef]
- Wu, S.F. Interval estimation for the two-parameter exponential distribution under progressive Type II censoring on the bayesian approach. Symmetry 2022, 14, 808. [Google Scholar] [CrossRef]
- El-Morshedy, M.; Eliwa, M.S.; El-Gohary, A.; Almetwally, E.M.; EL-Desokey, R. Exponentiated generalized inverse flexible Weibull distribution: Bayesian and non-bayesian estimation under complete and Type-II censored samples with applications. Commun. Math. Stat. 2022, 10, 413–434. [Google Scholar] [CrossRef]
- El-Sherpieny, E.-S.A.; Muhammed, H.Z.; Almetwally, E.M. Progressive Type-II censored samples for bivariate Weibull distribution with economic and medical Applications. Ann. Data Sci. 2022, 1–35. [Google Scholar] [CrossRef]
- Liang, W.; Ke, W.; Xuanjia, Z. Inference and prediction of progressive Type-II censored data from unit-generalized Rayleigh distribution. Hacet. J. Math. Stat. 2022, 51, 1752–1767. [Google Scholar]
- Alshenawy, R.; Ahmad, H.H.; Al-Alwan, A. Progressive censoring schemes for marshall-olkin Pareto distribution with applications: Estimation and prediction. PLoS ONE 2022, 17, e0270750. [Google Scholar] [CrossRef] [PubMed]
- Almetwally, E.M.; Jawa, T.M.; Sayed-Ahmed, N.; Park, C.; Zakarya, M.; Dey, S. Analysis of unit-Weibull based on progressive type-II censored with optimal scheme. Alex. Eng. J. 2023, 63, 321–338. [Google Scholar] [CrossRef]
- Muhammed, H.Z.; Almetwally, E.M. Bayesian and non-bayesian estimation for the bivariate inverse Weibull distribution under progressive Type-II censoring. Ann. Data Sci. 2023, 10, 481–512. [Google Scholar] [CrossRef]
- Çiftci, F.; Saraçoğlu, B.; Akdam, N.; Akdoğan, Y. Estimation of stress-strength reliability for generalized Gompertz distribution under progressive Type-II censoring. Hacet. J. Math. Stat. 2023. early access. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.X.; Chen, M.; Zhou, Y.W. Maximum likelihood estimation of the parameters of the inverse Gaussian distribution using maximum rank set sampling with unequal samples. Math. Popul. Stud. 2023, 30, 1–21. [Google Scholar] [CrossRef]
- Dubea, M.; Krishnaband, H.; Garg, R. Generalized inverted exponential distribution under progressive first-failure censoring. J. Stat. Comput. Simul. 2016, 86, 1095–1114. [Google Scholar] [CrossRef]
- Wu, S.-J.; Kuş, C. On estimation based on progressive first-failure-censored sampling. Comput. Stat. Data Anal. 2009, 53, 3659–3670. [Google Scholar] [CrossRef]
- Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1982. [Google Scholar]
- Akdam, N.; Kınacı, İ.; Saraçoğlu, B. Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive Type-II censored samples. Hacet. J. Math. Stat. 2017, 46, 239–253. [Google Scholar] [CrossRef]
- Lindley, D.V. Approximate bayesian methods. Trab. De Estad. 1980, 31, 223–237. [Google Scholar] [CrossRef]
- Ahmad, K.E.; Jaheen, Z.F. Approximate bayes estimators applied to the inverse gaussian lifetime model. Comput. Math. Appl. 1995, 29, 39–47. [Google Scholar] [CrossRef]
- Kundu, D.; Gupta, R.D. Generalized exponential distribution: Bayesian estimations. Comput. Stat. Data Anal. 2008, 52, 1873–1883. [Google Scholar] [CrossRef]
- Preda, V.; Panaitescu, E.; Constantinescu, A. Bayes estimators of Modified-Weibull distribution parameters using Lindley’s approximation. Wseas Trans. Math. 2010, 7, 539–549. [Google Scholar]
- Tierney, L.; Kadane, J.B. Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 1986, 393, 82–86. [Google Scholar] [CrossRef]
- Gencer, G.; Gencer, K. Estimations for The Odd Weibull Distribution under progressive Type-II right censored Samples. Sak. Univ. J. Sci. 2020, 24, 29–36. [Google Scholar] [CrossRef]
- Kim, C.; Han, K. Estimation of the scale parameter of the half-logistic distribution under progressively Type-II censored sample. Stat. Pap. 2010, 51, 375–387. [Google Scholar] [CrossRef]
- Elshahhat, A.; Rastogi, M.K. Estimation of parameters of life for an inverted Nadarajah–Haghighi distribution from Type-II progressively censored samples. Indian Soc. Probab. Stat. 2021, 22, 113–154. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, U.; Yadav, A.S. Bayesian estimation of Marshall–Olkin extended exponential parameters under various approximation techniques. Hacet. J. Math. Stat. 2014, 43, 347–360. [Google Scholar]
- Singh, U.; Singh, K.S.; Yadav, S.A. Bayesian Estimation for Extension of Exponential Distribution Under Progressive Type-II Censored Data Using Markov Chain Monte Carlo Method. J. Stat. Appl. Probab. 2015, 4, 275–283. [Google Scholar]
- Lv, Q.; Tian, Y.; Gui, W. Statistical inference for Gompertz distribution under adaptive Type-II progressive hybrid censoring. J. Appl. Stat. 2022, 1–30. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, A.; Tang, Y.; Shen, L. Fast bayesian inference of reparameterized gamma process with random effects. IEEE Trans. Reliab. 2023. early access. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Junnumtuam, S.; Niwitpong, S.A.; Niwitpong, S. A Zero-and-One Inflated Cosine Geometric Distribution and Its Application. Mathematics 2022, 10, 4012. [Google Scholar] [CrossRef]
- Albert, J.; Albert, M.J. Package LearnBayes. 2018. Available online: http://rsync5.jp.gentoo.org/pub/CRAN/web/packages/LearnBayes/LearnBayes.pdf (accessed on 28 July 2023).
- Balakrishnan, N.; Sandhu, R.A. A simple simulational algorithm for generating progressive Type-II censored samples. Am. Stat.-Stat. Comput. 1995, 2, 229–230. [Google Scholar]
- Pakyari, R.; Balakrishnan, N. A general purpose approximate goodness-of-fit test for progressively Type-II censored data. IEEE Trans. Reliab. 2012, 61, 238–2444. [Google Scholar] [CrossRef]
- Dey, S.; Elshahhat, A.; Nassar, M. Analysis of progressive Type-II censored gamma distribution. Comput. Stat. 2023, 38, 481–508. [Google Scholar] [CrossRef]
- Abo-Kasem, O.E.; Ibrahim, O.; Aljohani, H.M.; Hussam, E.; Kilai, M.; Aldallal, R. Statistical analysis based on progressive Type-I censored scheme from alpha power exponential distribution with engineering and medical Applications. Hindawi J. Math. 2022, 16, 3175820. [Google Scholar] [CrossRef]
n | m | Censoring Scheme | ML | LINDLEY | TIERNEY-KADANE | MCMC | ||||
---|---|---|---|---|---|---|---|---|---|---|
R | ||||||||||
10 | 5 | A | 0.0256 | 0.0290 | 0.0243 | 0.0258 | 0.0220 | 0.0253 | 0.0399 | 0.0221 |
B | 0.0338 | 0.0256 | 0.0311 | 0.0234 | 0.0292 | 0.0229 | 0.0221 | 0.0263 | ||
C | 0.0267 | 0.0262 | 0.0244 | 0.0229 | 0.0218 | 0.0227 | 0.0258 | 0.0234 | ||
10 | D | 0.0154 | 0.0207 | 0.0142 | 0.0183 | 0.0133 | 0.0182 | 0.0154 | 0.0181 | |
15 | 5 | A | 0.0196 | 0.0260 | 0.0179 | 0.0228 | 0.0169 | 0.0227 | 0.0426 | 0.0238 |
B | 0.0375 | 0.0241 | 0.0354 | 0.0224 | 0.0337 | 0.0222 | 0.0199 | 0.0246 | ||
C | 0.0188 | 0.0204 | 0.0179 | 0.0190 | 0.0165 | 0.0188 | 0.0220 | 0.0216 | ||
10 | A | 0.0142 | 0.0177 | 0.0126 | 0.0163 | 0.0122 | 0.0162 | 0.0195 | 0.0147 | |
B | 0.0208 | 0.0149 | 0.0189 | 0.0136 | 0.0184 | 0.0135 | 0.0136 | 0.0158 | ||
C | 0.0132 | 0.0145 | 0.0114 | 0.0134 | 0.0112 | 0.0133 | 0.0132 | 0.0132 | ||
15 | D | 0.0111 | 0.0139 | 0.0101 | 0.0129 | 0.0100 | 0.0129 | 0.0103 | 0.0126 | |
20 | 10 | A | 0.0211 | 0.0135 | 0.0196 | 0.0125 | 0.0190 | 0.0125 | 0.0209 | 0.0120 |
B | 0.0124 | 0.0160 | 0.0113 | 0.0148 | 0.0111 | 0.0147 | 0.0115 | 0.0154 | ||
C | 0.0139 | 0.0133 | 0.0122 | 0.0123 | 0.0121 | 0.0123 | 0.0122 | 0.0130 | ||
20 | D | 0.0082 | 0.0097 | 0.0074 | 0.0090 | 0.0073 | 0.0090 | 0.0079 | 0.0096 | |
30 | 10 | A | 0.0218 | 0.0134 | 0.0206 | 0.0130 | 0.0202 | 0.0129 | 0.0221 | 0.0134 |
B | 0.0110 | 0.0149 | 0.0106 | 0.0141 | 0.0103 | 0.0141 | 0.0115 | 0.0138 | ||
C | 0.0229 | 0.0144 | 0.0220 | 0.0137 | 0.0214 | 0.0137 | 0.0103 | 0.0111 | ||
15 | A | 0.0140 | 0.0085 | 0.0129 | 0.0081 | 0.0128 | 0.0081 | 0.0142 | 0.0088 | |
B | 0.0085 | 0.0112 | 0.0078 | 0.0106 | 0.0078 | 0.0106 | 0.0087 | 0.0107 | ||
C | 0.0141 | 0.0088 | 0.0134 | 0.0085 | 0.0133 | 0.0084 | 0.0084 | 0.0086 | ||
30 | 20 | A | 0.0106 | 0.0077 | 0.0099 | 0.0073 | 0.0099 | 0.0073 | 0.0099 | 0.0073 |
B | 0.0070 | 0.0091 | 0.0066 | 0.0086 | 0.0066 | 0.0086 | 0.0068 | 0.0085 | ||
C | 0.0071 | 0.0077 | 0.0065 | 0.0073 | 0.0065 | 0.0072 | 0.0071 | 0.0071 | ||
25 | A | 0.0072 | 0.0069 | 0.0068 | 0.0065 | 0.0068 | 0.0065 | 0.0071 | 0.0066 | |
30 | B | 0.0059 | 0.0077 | 0.0055 | 0.0073 | 0.0055 | 0.0073 | 0.0061 | 0.0075 | |
C | 0.0065 | 0.0075 | 0.0063 | 0.0072 | 0.0061 | 0.0072 | 0.0062 | 0.0068 | ||
30 | D | 0.0054 | 0.0068 | 0.0051 | 0.0064 | 0.0051 | 0.0064 | 0.0052 | 0.0065 | |
50 | 20 | A | 0.0110 | 0.0068 | 0.0104 | 0.0066 | 0.0104 | 0.0066 | 0.0106 | 0.0066 |
B | 0.0062 | 0.0079 | 0.0059 | 0.0076 | 0.0059 | 0.0076 | 0.0062 | 0.0079 | ||
C | 0.0061 | 0.0060 | 0.0057 | 0.0059 | 0.0057 | 0.0059 | 0.0056 | 0.0061 | ||
30 | A | 0.0072 | 0.0048 | 0.0068 | 0.0046 | 0.0068 | 0.0046 | 0.0061 | 0.0075 | |
B | 0.0046 | 0.0063 | 0.0045 | 0.0061 | 0.0045 | 0.0061 | 0.0062 | 0.0068 | ||
C | 0.0045 | 0.0048 | 0.0043 | 0.0047 | 0.0043 | 0.0047 | 0.0052 | 0.0065 | ||
40 | A | 0.0048 | 0.0041 | 0.0046 | 0.0039 | 0.0046 | 0.0039 | 0.0106 | 0.0066 | |
B | 0.0038 | 0.0048 | 0.0036 | 0.0047 | 0.0036 | 0.0047 | 0.0062 | 0.0079 | ||
C | 0.0036 | 0.0042 | 0.0034 | 0.0041 | 0.0034 | 0.0041 | 0.0056 | 0.0061 | ||
50 | D | 0.0030 | 0.0039 | 0.0028 | 0.0038 | 0.0028 | 0.0038 | 0.0061 | 0.0075 | |
70 | 30 | A | 0.0076 | 0.0045 | 0.0074 | 0.0044 | 0.0073 | 0.0043 | 0.0076 | 0.0043 |
B | 0.0043 | 0.0056 | 0.0041 | 0.0055 | 0.0040 | 0.0054 | 0.0043 | 0.0055 | ||
C | 0.0039 | 0.0042 | 0.0037 | 0.0041 | 0.0037 | 0.0040 | 0.0038 | 0.0039 | ||
40 | A | 0.0057 | 0.0032 | 0.0056 | 0.0031 | 0.0055 | 0.0030 | 0.0053 | 0.0035 | |
B | 0.0034 | 0.0031 | 0.0032 | 0.0030 | 0.0031 | 0.0029 | 0.0035 | 0.0047 | ||
C | 0.0043 | 0.0028 | 0.0042 | 0.0027 | 0.0041 | 0.0027 | 0.0032 | 0.0035 | ||
50 | A | 0.0038 | 0.0031 | 0.0036 | 0.0030 | 0.0035 | 0.0029 | 0.0037 | 0.0032 | |
B | 0.0030 | 0.0038 | 0.0029 | 0.0037 | 0.0028 | 0.0036 | 0.0029 | 0.0037 | ||
C | 0.0028 | 0.0030 | 0.0027 | 0.0029 | 0.0026 | 0.0028 | 0.0027 | 0.0031 | ||
70 | D | 0.0022 | 0.0029 | 0.0021 | 0.0028 | 0.0020 | 0.0026 | 0.0023 | 0.0027 | |
100 | 25 | A | 0.0095 | 0.0070 | 0.0092 | 0.0068 | 0.0091 | 0.0067 | 0.0100 | 0.0076 |
B | 0.0049 | 0.0065 | 0.0048 | 0.0063 | 0.0046 | 0.0062 | 0.0045 | 0.0063 | ||
C | 0.0038 | 0.0046 | 0.0037 | 0.0045 | 0.0036 | 0.0044 | 0.0038 | 0.0047 | ||
100 | 40 | A | 0.0057 | 0.0032 | 0.0056 | 0.0032 | 0.0056 | 0.0032 | 0.0055 | 0.0034 |
B | 0.0034 | 0.0043 | 0.0032 | 0.0042 | 0.0031 | 0.0041 | 0.0034 | 0.0043 | ||
C | 0.0028 | 0.0031 | 0.0027 | 0.0030 | 0.0027 | 0.0030 | 0.0028 | 0.0031 | ||
50 | A | 0.0043 | 0.0025 | 0.0042 | 0.0025 | 0.0042 | 0.0025 | 0.0044 | 0.0027 | |
B | 0.0027 | 0.0037 | 0.0026 | 0.0036 | 0.0026 | 0.0036 | 0.0029 | 0.0036 | ||
C | 0.0025 | 0.0027 | 0.0024 | 0.0026 | 0.0024 | 0.0026 | 0.0025 | 0.0027 | ||
70 | A | 0.0028 | 0.0024 | 0.0026 | 0.0022 | 0.0025 | 0.0021 | 0.0029 | 0.0022 | |
B | 0.0022 | 0.0027 | 0.0021 | 0.0026 | 0.0021 | 0.0025 | 0.0022 | 0.0026 | ||
C | 0.0020 | 0.0024 | 0.0019 | 0.0021 | 0.0019 | 0.0020 | 0.0019 | 0.0021 | ||
90 | A | 0.0019 | 0.0020 | 0.0018 | 0.0019 | 0.0018 | 0.0019 | 0.0021 | 0.0020 | |
B | 0.0018 | 0.0022 | 0.0017 | 0.0021 | 0.0016 | 0.0020 | 0.0016 | 0.0022 | ||
C | 0.0017 | 0.0021 | 0.0016 | 0.0020 | 0.0016 | 0.0020 | 0.0055 | 0.0034 | ||
100 | D | 0.0015 | 0.0019 | 0.0014 | 0.0018 | 0.0013 | 0.0018 | 0.0034 | 0.0043 |
R | ML Estimates | Lower Limit | Upper Limit | ACI Width | Probability of Coverage | Boot ML Estimates | Boot Lower Limit | Boot Upper Limit | Boot ACI Width | Boot Probability of Coverage | |
---|---|---|---|---|---|---|---|---|---|---|---|
20, 10 | A | 0.6108 | 0.2598 | 0.9618 | 0.7020 | 0.9618 | 0.7301 | 0.0403 | 1.0654 | 1.0251 | 0.9700 |
20, 10 | B | 0.5618 | 0.3117 | 0.8118 | 0.5001 | 0.9540 | 0.4987 | 0.0403 | 0.8309 | 0.7906 | 0.9560 |
20, 10 | C | 0.5740 | 0.3184 | 0.8297 | 0.5112 | 0.9460 | 0.8986 | 0.0446 | 0.8945 | 0.8498 | 0.9490 |
20, 20 | D | 0.5318 | 0.3478 | 0.7159 | 0.3681 | 0.9300 | 0.6347 | 0.4034 | 0.8236 | 0.4203 | 0.9100 |
50, 30 | A | 0.5414 | 0.3656 | 0.7172 | 0.3515 | 0.9400 | 0.5393 | 0.4112 | 0.7922 | 0.3811 | 0.9000 |
50, 30 | B | 0.5316 | 0.3822 | 0.6810 | 0.2988 | 0.9200 | 0.5465 | 0.4209 | 0.7432 | 0.3223 | 0.9000 |
50, 30 | C | 0.5217 | 0.3885 | 0.6549 | 0.2664 | 0.9600 | 0.5138 | 0.4223 | 0.7106 | 0.2882 | 0.9100 |
50, 50 | D | 0.5129 | 0.4012 | 0.6246 | 0.2234 | 0.9400 | 0.6025 | 0.4269 | 0.6568 | 0.2299 | 0.9300 |
100, 50 | A | 0.5170 | 0.3844 | 0.6501 | 0.2657 | 0.9420 | 0.7353 | 0.4174 | 0.8799 | 0.4625 | 0.9100 |
100, 50 | B | 0.5126 | 0.4068 | 0.6183 | 0.2114 | 0.9560 | 0.6427 | 0.4300 | 0.7583 | 0.3283 | 0.9220 |
100, 50 | C | 0.5149 | 0.4174 | 0.6124 | 0.1950 | 0.9480 | 0.7634 | 0.4666 | 0.8495 | 0.3829 | 0.9590 |
100, 70 | A | 0.5107 | 0.4046 | 0.6167 | 0.2121 | 0.9420 | 0.7674 | 0.4575 | 0.8715 | 0.4140 | 0.9270 |
100, 70 | B | 0.5110 | 0.4195 | 0.6025 | 0.1830 | 0.9510 | 0.7105 | 0.4637 | 0.7769 | 0.3132 | 0.9380 |
100, 70 | C | 0.5110 | 0.4228 | 0.5992 | 0.1765 | 0.9600 | 0.7092 | 0.4658 | 0.7935 | 0.3277 | 0.9520 |
100, 100 | D | 0.5059 | 0.4285 | 0.5834 | 0.1549 | 0.9520 | 0.6822 | 0.4650 | 0.7321 | 0.2671 | 0.9380 |
R | ML Estimates | Lower Limit | Upper Limit | ACI Width | Probability of Coverage | Boot ML Estimates | Boot Lower Limit | Boot Upper Limit | Boot ACI Width | Boot Probability of Coverage | |
---|---|---|---|---|---|---|---|---|---|---|---|
20, 10 | A | 0.8456 | 0.5594 | 1.1317 | 0.5723 | 0.9500 | 0.6020 | 0.0628 | 1.2287 | 1.1659 | 0.9090 |
20, 10 | B | 0.8161 | 0.5293 | 1.1028 | 0.5735 | 0.9430 | 1.2557 | 0.0588 | 1.0514 | 0.9926 | 0.8790 |
20, 10 | C | 0.8320 | 0.5624 | 1.1017 | 0.5394 | 0.9230 | 0.6366 | 0.0620 | 1.1208 | 1.0588 | 0.8780 |
20, 20 | D | 0.8215 | 0.6064 | 1.0365 | 0.4301 | 0.9500 | 0.6937 | 0.5947 | 1.0367 | 0.4690 | 0.9500 |
50, 30 | A | 0.8082 | 0.5238 | 0.3592 | 0.3293 | 0.9600 | 0.5375 | 0.4021 | 0.7620 | 0.3599 | 0.9100 |
50, 30 | B | 0.7983 | 0.6248 | 0.9718 | 0.3470 | 0.9300 | 0.8135 | 0.6215 | 0.9815 | 0.3600 | 0.9300 |
50, 30 | C | 0.8046 | 0.6531 | 0.9562 | 0.3031 | 0.9500 | 0.7046 | 0.6641 | 0.9831 | 0.3190 | 0.9400 |
50, 50 | D | 0.7952 | 0.6612 | 0.9293 | 0.2681 | 0.9800 | 0.7776 | 0.6571 | 0.9312 | 0.2741 | 0.9700 |
100, 50 | A | 0.8087 | 0.6947 | 0.9227 | 0.2280 | 0.9300 | 1.0515 | 0.7127 | 1.1498 | 0.4371 | 0.9220 |
100, 50 | B | 0.8005 | 0.6701 | 0.9309 | 0.2608 | 0.9480 | 1.0057 | 0.6774 | 1.0668 | 0.3894 | 0.9440 |
100, 50 | C | 0.8072 | 0.6926 | 0.9219 | 0.2293 | 0.9410 | 1.0665 | 0.7409 | 1.1613 | 0.4204 | 0.9220 |
100, 70 | A | 0.8022 | 0.7043 | 0.9002 | 0.1959 | 0.9590 | 0.9923 | 0.7421 | 1.0638 | 0.3216 | 0.9540 |
100, 70 | B | 0.7979 | 0.6861 | 0.9096 | 0.2285 | 0.9490 | 1.0143 | 0.7277 | 1.0827 | 0.3550 | 0.9210 |
100, 70 | C | 0.7987 | 0.6974 | 0.9000 | 0.2026 | 0.9530 | 0.9865 | 0.7361 | 1.0494 | 0.3133 | 0.9480 |
100, 100 | D | 0.8000 | 0.7052 | 0.8948 | 0.1896 | 0.9480 | 0.9645 | 0.7395 | 1.0215 | 0.2820 | 0.9410 |
0.08 | 0.2 | 0.4 | 0.5 | 0.51 | 0.81 | 0.9 | 1.05 | 1.19 | 1.26 | 1.35 | 1.4 | 1.46 |
1.76 | 2.02 | 2.02 | 2.07 | 2.09 | 2.23 | 2.26 |
Censoring Scheme | MLE | LINDLEY | TIERNEY–KADANE | MCMC | |||||
---|---|---|---|---|---|---|---|---|---|
R | |||||||||
(128, 20) | (19*0.108) | 0.9007 | 0.7275 | 0.8878 | 0.7363 | 0.8880 | 0.7355 | 0.9751 | 0.6929 |
Censoring Scheme | |||||||
---|---|---|---|---|---|---|---|
R | Boot ML Estimate | Boot Lower Limit | Boot Upper Limit | Boot ML Estimate | Boot Lower Limit | Boot Upper Limit | |
(128, 20) | (19*0.108) | 0.9598 | 0.6771 | 1.3656 | 0.7242 | 0.5046 | 0.9459 |
24 | 46 | 57 | 57 | 64 | 65 | 82 | 89 | 90 | 90 | 111 | 117 | 128 |
143 | 148 | 152 | 166 | 171 | 186 | 191 |
Censoring Scheme | MLE | LINDLEY | TIERNEY–KADANE | MCMC | |||||
---|---|---|---|---|---|---|---|---|---|
R | |||||||||
(51, 20) | (19*0.31) | 1.2166 | 0.0029 | 0.9139 | 0.0089 | 0.9599 | 0.0150 | 0.9062 | 0.0158 |
Censoring Scheme | |||||||
---|---|---|---|---|---|---|---|
R | Boot ML Estimate | Boot Lower Limit | Boot Upper Limit | Boot ML Estimate | Boot Lower Limit | Boot Upper Limit | |
(51, 20) | (19*0.31) | 1.3196 | 0.9278 | 1.8922 | 0.0031 | 0.0001 | 0.0124 |
12.20 | 23.56 | 23.74 | 25.87 | 31.98 | 37 | 41.35 | 47.38 | 55.46 | 58.36 | 63.47 |
68.46 | 78.26 | 74.47 | 81 | 83 | 84 | 92 | 94 | 110 |
Censoring Scheme | MLE | LINDLEY | TIERNEY–KADANE | MCMC | |||||
---|---|---|---|---|---|---|---|---|---|
R | |||||||||
(45, 20) | (19*0.25) | 1.1476 | 0.0083 | 0.9062 | 0.0205 | 0.9420 | 0.0269 | 0.8879 | 0.0289 |
Censoring Scheme | |||||||
---|---|---|---|---|---|---|---|
R | Boot ML Estimate | Boot Lower Limit | Boot Upper Limit | Boot ML Estimate | Boot Lower Limit | Boot Upper Limit | |
(45, 20) | (19*0.25) | 1.2359 | 0.8764 | 1.7795 | 0.0086 | 0.0006 | 0.0287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akdam, N. Bayes Estimation for the Rayleigh–Weibull Distribution Based on Progressive Type-II Censored Samples for Cancer Data in Medicine. Symmetry 2023, 15, 1754. https://doi.org/10.3390/sym15091754
Akdam N. Bayes Estimation for the Rayleigh–Weibull Distribution Based on Progressive Type-II Censored Samples for Cancer Data in Medicine. Symmetry. 2023; 15(9):1754. https://doi.org/10.3390/sym15091754
Chicago/Turabian StyleAkdam, Neriman. 2023. "Bayes Estimation for the Rayleigh–Weibull Distribution Based on Progressive Type-II Censored Samples for Cancer Data in Medicine" Symmetry 15, no. 9: 1754. https://doi.org/10.3390/sym15091754
APA StyleAkdam, N. (2023). Bayes Estimation for the Rayleigh–Weibull Distribution Based on Progressive Type-II Censored Samples for Cancer Data in Medicine. Symmetry, 15(9), 1754. https://doi.org/10.3390/sym15091754