Triptycene Based 3D Covalent Organic Frameworks (COFs)—An Emerging Class of 3D Structures
Abstract
:1. Introduction
3D COFs—Synthesis and Properties
2. Triptycene in Polymeric Materials
Triptycene in 3D COFs
Name | Topology | TGA (°C) | SBET (M−1 g−1) | Pore Size Distribution (Å) | CO2 Uptake (cm3g−1) | CH4 Uptake (cm3g−1) | H2 Uptake (cm3g−1) | Reference |
---|---|---|---|---|---|---|---|---|
Trip-COF 1 | stp | - | 1473.00 | 12.6, 29.6, 39.9 | - | - | - | [65] |
Trip-COF 2 | 1624.00 | 12.6, 29.3 | ||||||
JUC-568 JUC-569 | ceq/acs | ~520 ~400 | 1433.00 1254.00 | ~19.2 ~18.7 | 98.00 (273 K), 81.00 (298 K) 47.00 (273 K), 31.00 (298 K) | 48.00 (273 K), 32.00 (298 K) 19.00 (273 K), 11.00 (298 K) | 274.00 (77 K) 167.00 (77 K) | [28] |
3D-ceq-COF | ceq | ~550 | 1148.6 | 10, 16 | 91.27 (273 K), 330.33 (298 K) | 36.28 (273 K), 23.22(298 K) | 178.49 (77 K), 131.27 (98 K) | [59] |
3D-hea-COF | hea | 1804.00 | 16 | 80.01 (273 K) | 21.77 (273 K) | 193.48 (77 K) | [40] | |
JUC-564 | stp | 3383.00 | 15, 43 | - | - | - | [57] |
3. Future Perspectives
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, F.; Liu, H.; Mathe, S.; Dong, A.; Zhang, J. Covalent Organic Frameworks: From Materials Design to Biomedical Application. Nanomaterials 2017, 8, 15. [Google Scholar] [CrossRef]
- Abuzeid, R.; EL-Mahdy, A.F.M.; Kuo, S.-W. Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant 2021, 6, 100054. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, J.; Gao, Y. “Synthesis, Properties, and Their Potential Application of Covalent Organic Frameworks (COFs)”, Mesoporous Materials—Properties and Applications; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Guan, Q.; Zhou, L.; Li, W.; Li, Y.; Dong, Y. Covalent Organic Frameworks (COFs) for Cancer Therapeutics. Chem. A Eur. J. 2020, 26, 5583–5591. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, O.M. Reticular Chemistry—Construction, Properties, and Precision Reactions of Frameworks. J. Am. Chem. Soc. 2016, 138, 15507–15509. [Google Scholar] [CrossRef] [PubMed]
- Mercado, R.; Fu, R.-S.; Yakutovich, A.V.; Talirz, L.; Haranczyk, M.; Smit, B. In Silico Design of 2D and 3D Covalent Organic Frameworks for Methane Storage Applications. Chem. Mater. 2018, 30, 5069–5086. [Google Scholar] [CrossRef]
- Martin, R.L.; Simon, C.M.; Medasani, B.; Britt, D.K.; Smit, B.; Haranczyk, M. In Silico Design of Three-Dimensional Porous Covalent Organic Frameworks via Known Synthesis Routes and Commercially Available Species. J. Phys. Chem. C 2014, 118, 23790–23802. [Google Scholar] [CrossRef]
- Martin, R.L.; Simon, C.M.; Smit, B.; Haranczyk, M. In silico Design of Porous Polymer Networks: High-Throughput Screening for Methane Storage Materials. J. Am. Chem. Soc. 2014, 136, 5006–5022. [Google Scholar] [CrossRef]
- Lan, Y.; Han, X.; Tong, M.; Huang, H.; Yang, Q.; Liu, D.; Zhao, X.; Zhong, C. Materials genomics methods for high-throughput construction of COFs and targeted synthesis. Nat. Commun. 2018, 9, 5274. [Google Scholar] [CrossRef]
- Ongari, D.; Yakutovich, A.V.; Talirz, L.; Smit, B. Building a Consistent and Reproducible Database for Adsorption Evaluation in Covalent–Organic Frameworks. ACS Cent. Sci. 2019, 5, 1663–1675. [Google Scholar] [CrossRef]
- Tong, M.; Lan, Y.; Yang, Q.; Zhong, C. Exploring the structure-property relationships of covalent organic frameworks for noble gas separations. Chem. Eng. Sci. 2017, 168, 456–464. [Google Scholar] [CrossRef]
- De Vos, J.S.; Borgmans, S.; Van Der Voort, P.; Rogge, S.M.J.; Van Speybroeck, V. ReDD-COFFEE: A ready-to-use database of covalent organic framework structures and accurate force fields to enable high-throughput screenings. J. Mater. Chem. A Mater. 2023, 11, 7468–7487. [Google Scholar] [CrossRef]
- Wu, M.-X.; Yang, Y.-W. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chin. Chem. Let. 2017, 28, 1135–1143. [Google Scholar] [CrossRef]
- Ma, H.; Chen, J.J.; Tan, L.; Bu, J.H.; Zhu, Y.; Tan, B.; Zhang, C. Nitrogen-Rich Triptycene-Based Porous Polymer for Gas Storage and Iodine Enrichment. ACS Macro Lett. 2016, 5, 1039–1043. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Ge, R.; Song, X.; Xing, X.; Jiang, Q.; Lu, H.; Hao, C.; Guo, X.; Gao, Y.; et al. A 3D Covalent Organic Framework with Exceptionally High Iodine Capture Capability. Chem. A Eur. J. 2018, 24, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Konavarapu, S.K.; Biradha, K. Luminescent Triazene-Based Covalent Organic Frameworks Functionalized with Imine and Azine: N2 and H2 Sorption and Efficient Removal of Organic Dye Pollutants. Cryst. Growth Des. 2019, 19, 362–368. [Google Scholar] [CrossRef]
- Yu, S.B.; Lyu, H.; Tian, J.; Wang, H.; Zhang, D.W.; Liu, Y.; Li, Z.T. A polycationic covalent organic framework: A robust adsorbent for anionic dye pollutants. Polym. Chem. 2016, 7, 3392–3397. [Google Scholar] [CrossRef]
- Liu, Y.; Dikhtiarenko, A.; Xu, N.; Sun, J.; Tang, J.; Wang, K.; Xu, B.; Tong, Q.; Heeres, H.J.; He, S.; et al. Triphenylphosphine-Based Covalent Organic Frameworks and Heterogeneous Rh-P-COFs Catalysts. Chem. A Eur. J. 2020, 26, 12134–12139. [Google Scholar] [CrossRef]
- Li, Y.; Pei, B.; Chen, J.; Bing, S.; Hou, L.; Sun, Q.; Xu, G.; Yao, Z.; Zhang, L. Hollow nanosphere construction of covalent organic frameworks for catalysis: (Pd/C)@TpPa COFs in Suzuki coupling reaction. J. Colloid Interface Sci. 2021, 591, 273–280. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, M.; Liu, K.; Cao, H.; Yan, H. Covalent organic frameworks for photocatalytic applications. Appl. Catal. B 2020, 276, 119174. [Google Scholar] [CrossRef]
- Yazdani, H.; Shahbazi, M.-A.; Varma, R.S. 2D and 3D Covalent Organic Frameworks: Cutting-Edge Applications in Biomedical Sciences. ACS Appl. Bio. Mater. 2022, 5, 40–58. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, B.; Liu, G.; Zhang, D. Electrochemical Sensors Based on Covalent Organic Frameworks: A Critical Review. Front. Chem. 2020, 8, 601044. [Google Scholar] [CrossRef]
- Gan, S.; Tong, X.; Zhang, Y.; Wu, J.; Hu, Y.; Yuan, A. Covalent Organic Framework-Supported Molecularly Dispersed Near-Infrared Dyes Boost Immunogenic Phototherapy against Tumors. Adv. Funct. Mater. 2019, 29, 1902757. [Google Scholar] [CrossRef]
- Ma, X.; Scott, T.F. Approaches and challenges in the synthesis of three-dimensional covalent-organic frameworks. Commun. Chem. 2018, 1, 98. [Google Scholar] [CrossRef]
- Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068. [Google Scholar] [CrossRef]
- Zhu, D.; Zhu, Y.; Chen, Y.; Yan, Q.; Wu, H.; Liu, C.Y.; Wang, X.; Alemany, L.B.; Gao, G.; Senftle, T.P.; et al. Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers. Nat. Commun. 2023, 14, 2865. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Han, X.; Yuan, C.; Cheng, C.; Liu, Y.; Cui, Y. Reticular Synthesis of tbo Topology Covalent Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 16346–16356. [Google Scholar] [CrossRef]
- Li, H.; Chen, F.; Guan, X.; Li, J.; Li, C.; Tang, B.; Valtchev, V.; Yan, Y.; Qiu, S.; Fang, Q. Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology. J. Am. Chem. Soc. 2021, 143, 2654–2659. [Google Scholar] [CrossRef]
- Baldwin, L.A.; Crowe, J.W.; Pyles, D.A.; McGrier, P.L. Metalation of a Mesoporous Three-Dimensional Covalent Organic Framework. J. Am. Chem. Soc. 2016, 138, 15134–15137. [Google Scholar] [CrossRef]
- Gui, B.; Lin, G.; Ding, H.; Gao, C.; Mal, A.; Wang, C. Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications. Acc. Chem. Res. 2020, 53, 2225–2234. [Google Scholar] [CrossRef]
- Uribe-Romo, F.J.; Hunt, J.R.; Furukawa, H.; Klöck, C.; O’Keeffe, M.; Yaghi, O.M. A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. J. Am. Chem. Soc. 2009, 131, 4570–4571. [Google Scholar] [CrossRef]
- El-Kaderi, H.M.; Hunt, J.R.; Mendoza-Cortés, J.L.; Côté, A.P.; Taylor, R.E.; O’Keeffe, M.; Yaghi, O.M. Designed Synthesis of 3D Covalent Organic Frameworks. Science 2007, 316, 268–272. [Google Scholar] [CrossRef]
- Lin, G.; Ding, H.; Yuan, D.; Wang, B.; Wang, C. A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework. J. Am. Chem. Soc. 2016, 138, 3302–3305. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, J.; Ma, D.; Li, P.; Li, S.; Li, H.; Zhou, J.; Ma, X.; Feng, X.; Wang, B. Three-Dimensional Anionic Cyclodextrin-Based Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2017, 56, 16313–16317. [Google Scholar] [CrossRef]
- Yahiaoui, O.; Fitch, A.N.; Hoffmann, F.; Fröba, M.; Thomas, A.; Roeser, J. 3D Anionic Silicate Covalent Organic Framework with srs Topology. J. Am. Chem. Soc. 2018, 140, 5330–5333. [Google Scholar] [CrossRef]
- Ma, T.; Kapustin, E.A.; Yin, S.X.; Liang, L.; Zhou, Z.; Niu, J.; Li, L.H.; Wang, Y.; Su, J.; Li, J.; et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 2018, 361, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Wang, X.; Clowes, R.; Cui, P.; Chen, L.; Little, M.A.; Cooper, A.I. 3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes. J. Am. Chem. Soc. 2020, 142, 16842–16848. [Google Scholar] [CrossRef] [PubMed]
- Gropp, C.; Ma, T.; Hanikel, N.; Yaghi, O.M. Design of higher valency in covalent organic frameworks. Science 2020, 370, eabd6406. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.L.; Gropp, C.; Ma, Y.; Zhu, C.; Yaghi, O.M. 3D Covalent Organic Frameworks Selectively Crystallized through Conformational Design. J. Am. Chem. Soc. 2020, 142, 20335–20339. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sheng, L.; Hsueh, C.; Wang, X.; Cui, H.; Gao, H.; Wu, Y.; Wang, J.; Tang, Y.; Xu, H.; et al. Three-Dimensional Covalent Organic Frameworks with hea Topology. Chem. Mater. 2021, 33, 9618–9623. [Google Scholar] [CrossRef]
- Xu, X.; Cai, P.; Chen, H.; Zhou, H.-C.; Huang, N. Three-Dimensional Covalent Organic Frameworks with she Topology. J. Am. Chem. Soc. 2022, 144, 18511–18517. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Lin, C.; Gui, B.; Ji, C.; Yuan, D.; Sun, J.; Wang, C. Tuning the Topology of Three-Dimensional Covalent Organic Frameworks via Steric Control: From pts to Unprecedented ljh. J. Am. Chem. Soc. 2021, 143, 7279–7284. [Google Scholar] [CrossRef]
- Wang, X.; Bahri, M.; Fu, Z.; Little, M.A.; Liu, L.; Niu, H.; Browning, N.D.; Chong, S.Y.; Chen, L.; Ward, J.W.; et al. A Cubic 3D Covalent Organic Framework with nbo Topology. J. Am. Chem. Soc. 2021, 143, 15011–15016. [Google Scholar] [CrossRef]
- Lu, H.; Han, W.; Yan, X.; Chen, C.; Niu, T.; Gu, Z. A 3D Anionic Metal Covalent Organic Framework with soc Topology Built from an Octahedral TiIV Complex for Photocatalytic Reactions. Angew. Chem. Int. Ed. 2021, 60, 17881–17886. [Google Scholar] [CrossRef]
- Bera, R.; Ansari, M.; Alam, A.; Das, N. Nanoporous azo polymers (NAPs) for selective CO2 uptake. J. CO2 Util. 2018, 28, 385–392. [Google Scholar] [CrossRef]
- Alam, A.; Mishra, S.; Hassan, A.; Bera, R.; Dutta, S.; Das Saha, K.; Das, N. Triptycene-Based and Schiff-Base-Linked Porous Networks: Efficient Gas Uptake, High CO2/N2 Selectivity, and Excellent Antiproliferative Activity. ACS Omega 2020, 5, 4250–4260. [Google Scholar] [CrossRef] [PubMed]
- Bera, R.; Mondal, S.; Das, N. Triptycene based microporous polymers (TMPs): Efficient small gas (H2 and CO2) storage and high CO2/N2 selectivity. Microporous Mesoporous Mater. 2018, 257, 253–261. [Google Scholar] [CrossRef]
- Hassan, A.; Alam, A.; Ansari, M.; Das, N. Hydroxy functionalized triptycene based covalent organic polymers for ultra-high radioactive iodine uptake. Chem. Eng. J. 2022, 427, 130950. [Google Scholar] [CrossRef]
- Shetty, S.; Baig, N.; Hassan, A.; Al-Mousawi, S.; Das, N.; Alameddine, B. Polyphenylene networks containing triptycene units: Promising porous materials for CO2, CH4, and H2 adsorption. Microporous Mesoporous Mater. 2020, 303, 110256. [Google Scholar] [CrossRef]
- Preet, K.; Gupta, G.; Kotal, M.; Kansal, S.K.; Salunke, D.B.; Sharma, H.K.; Chandra Sahoo, S.; Van Der Voort, P.; Roy, S. Mechanochemical Synthesis of a New Triptycene-Based Imine-Linked Covalent Organic Polymer for Degradation of Organic Dye. Cryst. Growth Des. 2019, 19, 2525–2530. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, Q.; Bear, T.K.; Curtis, T.E.; Roeder, R.K.; Doherty, C.M.; Hill, A.J.; Guo, R. Triptycene-containing poly(benzoxazole-co-imide) membranes with enhanced mechanical strength for high-performance gas separation. J. Memb. Sci. 2018, 551, 305–314. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Guo, J.; Gu, S.; Wang, Y.; Fu, Y.; Chen, D.; Lin, Y.; Yu, G.; Pan, C. The role of the internal molecular free volume in defining organic porous copolymer properties: Tunable porosity and highly selective CO2 adsorption. Phys. Chem. Chem. Phys. 2016, 18, 11323–11329. [Google Scholar] [CrossRef]
- Bera, R.; Ansari, M.; Alam, A.; Das, N. Triptycene, Phenolic-OH, and Azo-Functionalized Porous Organic Polymers: Efficient and Selective CO2 Capture. ACS Appl. Polym. Mater. 2019, 1, 959–968. [Google Scholar] [CrossRef]
- Alam, A.; Bera, R.; Ansari, M.; Hassan, A.; Das, N. Triptycene-Based and Amine-Linked Nanoporous Networks for Efficient CO2 Capture and Separation. Front. Energy Res. 2019, 7, 141. [Google Scholar] [CrossRef]
- Zhang, C.; Zhai, T.L.; Wang, J.J.; Wang, Z.; Liu, J.M.; Tan, B.; Yang, X.L.; Xu, H.B. Triptycene-based microporous polyimides: Synthesis and their high selectivity for CO2 capture. Polymer 2014, 55, 3642–3647. [Google Scholar] [CrossRef]
- Co, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef]
- Li, H.; Ding, J.; Guan, X.; Chen, F.; Li, C.; Zhu, L.; Xue, M.; Yuan, D.; Valtchev, V.; Yan, Y.; et al. Three-Dimensional Large-Pore Covalent Organic Framework with stp Topology. J. Am. Chem. Soc. 2020, 142, 13334–13338. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chang, J.; Li, S.; Guan, X.; Li, D.; Li, C.; Tang, L.; Xue, M.; Yan, Y.; Valtchev, V.; et al. Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. J. Am. Chem. Soc. 2019, 141, 13324–13329. [Google Scholar] [CrossRef]
- Li, Z.; Sheng, L.; Wang, H.; Wang, X.; Li, M.; Xu, Y.; Cui, H.; Zhang, H.; Liang, H.; Xu, H.; et al. Three-Dimensional Covalent Organic Framework with ceq Topology. J. Am. Chem. Soc. 2021, 143, 92–96. [Google Scholar] [CrossRef]
- Lu, W.; Yuan, D.; Zhao, D.; Schilling, C.I.; Plietzsch, O.; Muller, T.; Brase, S.; Guenther, J.; Blumel, J.; Krishna, R.; et al. Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation. Chem. Mater. 2010, 22, 5964–5972. [Google Scholar] [CrossRef]
- Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J.M.; et al. Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area. Angew. Chem. Int. Ed. 2009, 48, 9457–9460. [Google Scholar] [CrossRef]
- Jiang, J.X.; Laybourn, A.; Clowes, R.; Khimyak, Y.Z.; Bacsa, J.; Higgins, S.J.; Adams, D.J.; Cooper, A.I. High Surface Area Contorted Conjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene. Macromolecules 2010, 43, 7577–7582. [Google Scholar] [CrossRef]
- Li, H.; Pan, Q.; Ma, Y.; Guan, X.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis. J. Am. Chem. Soc. 2016, 138, 14783–14788. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, B.S.; Msayib, K.J.; McKeown, N.B.; Harris, K.D.; Pan, Z.; Budd, P.M.; Butler, A.; Selbie, J.; Book, D.; Walton, A. A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. Chem. Commun. 2007, 1, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, C.; Sun, W.; Pan, Q.; Hao, W.; Liu, H.; Sun, J.; Li, Z.; Sun, J.; Zhao, Y. Triptycene-based three-dimensional covalent organic frameworks with stp topology of honeycomb structure. Mater. Chem. Front. 2021, 5, 944–949. [Google Scholar] [CrossRef]
BORONIC ESTER | |
BOROXINE | |
IMINE | |
HYDRAZONE | |
IMIDE | |
AMIDE | |
AZINE | |
β-KETOENAMINE | |
β-KETOENAMINE | |
BORAZINE | |
SQUARAINE | |
PHENAZINE | |
C=C BOND | |
1,3,5-TRIAZINE |
Polymer | SABET (m2g−1) | SALANG (m2g−1) | Vtotal (cm3 g−1) | Reference |
---|---|---|---|---|
NAP 1 | 1095 | 1622 | 1.060 | [45] |
NAP 2 | 923 | 1353 | 0.690 | |
TMP1 | 923 | 1211 | 0.490 | [47] |
TMP2 | 1094 | 1457 | 0.700 | |
TMP3 | 1372 | 1817 | 0.860 | |
TAP1 | 474 | 736 | 0.740 | [53] |
TAP2 | 772 | 1173 | 1.410 | |
TAP3 | 729 | 1093 | 1.040 | |
TBPAL1 | 775 | 1036 | 0.401 | [54] |
TBPAL2 | 729 | 945 | 0.369 | |
TBPAL3 | 602 | 942 | 0.446 | |
TBPAL4 | 620 | 1027 | 0.529 | |
TBPAL5 | 815 | 1411 | 0.760 | |
T_COP-1 | 206 | - | 0.218 | [48] |
T_COP-2 | 259 | 0.320 | ||
T_COP-3 | 826 | 0.533 | ||
TPP1 | 380 | - | 0.250 | [49] |
TPP2 | 468 | 0.290 | ||
TPP3 | 240 | 0.250 | ||
STP-2 | 541 | 736 | 0.320 | [55] |
STP-3 | 378 | 515 | 0.340 | |
TBOSBL1 | 649 | 1051 | 0.527 | [46] |
TBOSBL2 | 570 | 810 | 0.384 | |
TBOSBL3 | 493 | 817 | 0.467 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkowska, M.; Mrówczyński, R. Triptycene Based 3D Covalent Organic Frameworks (COFs)—An Emerging Class of 3D Structures. Symmetry 2023, 15, 1803. https://doi.org/10.3390/sym15091803
Borkowska M, Mrówczyński R. Triptycene Based 3D Covalent Organic Frameworks (COFs)—An Emerging Class of 3D Structures. Symmetry. 2023; 15(9):1803. https://doi.org/10.3390/sym15091803
Chicago/Turabian StyleBorkowska, Monika, and Radosław Mrówczyński. 2023. "Triptycene Based 3D Covalent Organic Frameworks (COFs)—An Emerging Class of 3D Structures" Symmetry 15, no. 9: 1803. https://doi.org/10.3390/sym15091803
APA StyleBorkowska, M., & Mrówczyński, R. (2023). Triptycene Based 3D Covalent Organic Frameworks (COFs)—An Emerging Class of 3D Structures. Symmetry, 15(9), 1803. https://doi.org/10.3390/sym15091803