Gravitational Light Bending in Weyl Gravity and Schwarzschild–de Sitter Spacetime
Abstract
:1. Introduction
2. The Action of Weyl Gravity
3. Bending of Light in the SdS and MK Spacetimes
3.1. SdS Spacetime
3.2. MK Spacetime
4. Discussion
Funding
Conflicts of Interest
References
- Islam, J.N. The cosmological constant and classical tests of general relativity. Phys. Lett. A 1983, 97, 239. [Google Scholar] [CrossRef]
- Finelli, F.; Galaverni, M.; Gruppuso, A. Light bending as a probe of the nature of dark energy. Phys. Rev. D 2007, 75, 43003. [Google Scholar] [CrossRef]
- Rindler, W.; Ishak, M. Contribution of the cosmological constant to the relativistic bending of light revisited. Phys. Rev. D 2007, 76, 43006. [Google Scholar] [CrossRef]
- Ishak, M.; Rindler, W.; Dossett, J.; Moldenhauer, J.; Allison, C. A new independent limit on the cosmological constant/dark energy from the relativistic bending of light by Galaxies and clusters of Galaxies. Mon. Not. R. Astron. Soc. 2008, 388, 1279. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications to the General Theory of Relativity; John Wiley & Sons: Hoboken, NJ, USA, 1972. [Google Scholar]
- Sereno, M. Influence of the cosmological constant on gravitational lensing in small systems. Phys. Rev. D 2008, 77, 43004. [Google Scholar] [CrossRef]
- Sereno, M. Role of Λ in the Cosmological Lens Equation. Phys. Rev. Lett. 2009, 102, 21301. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, A.; Biswas, S.; Sarkar, K. Gravitational deflection of light in the Schwarzschild -de Sitter space time. Phys. Rev. D 2010, 82, 63003. [Google Scholar] [CrossRef]
- Schucker, T. Cosmological constant and lensing. Gen. Relativ. Grav. 2009, 41, 67. [Google Scholar] [CrossRef]
- Schucker, T. Strong lensing in the Einstein–Straus solution. Gen. Relativ. Grav. 2009, 41, 1595. [Google Scholar] [CrossRef]
- Khriplovich, I.B.; Pomeransky, A.A. Does Cosmological Term Influence Gravitational Lensing? Int. J. Mod. Phys. D 2008, 17, 2255. [Google Scholar] [CrossRef]
- Park, M. Rigorous approach to gravitational lensing. Phys. Rev. D 2008, 78, 23014. [Google Scholar] [CrossRef]
- Simpson, E.; Peacock, J.; Heavens, A. On lensing by a cosmological constant. Mon. Not. R. Astron. Soc. 2010, 402, 2009. [Google Scholar] [CrossRef]
- Butcher, L.M. Lambda does not lens: Deflection of light in the Schwarzschild-de Sitter spacetime. Phys. Rev. D 2016, 94, 83011. [Google Scholar] [CrossRef]
- Hu, L.; Heavens, A.; Bacon, D. Light bending by the cosmological constant. J. Cosmol. Astropart. Phys. (JCAP) 2022, 2, 09. [Google Scholar] [CrossRef]
- Riegert, R.J. Birkhoff’s Theorem in conformal gravity. Phys. Rev. Lett. 1984, 53, 315. [Google Scholar] [CrossRef]
- Mannheim, P.D.; Kazanas, D. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves. Astrophys. J. 1989, 342, 635. [Google Scholar] [CrossRef]
- Mannheim, P.D.; Kazanas, D. General structure of the gravitational equations of motion in conformal Weyl gravity. Astrophys. J. Suppl. Ser. 1991, 76, 431. [Google Scholar]
- Mannheim, P.D. Linear potentials and galactic rotation curves. Astrophys. J. 1993, 419, 150. [Google Scholar] [CrossRef]
- Mannheim, P.D. Are galactic rotation curves really flat? Astrophys. J. 1997, 479, 659. [Google Scholar] [CrossRef]
- Mannheim, P.D.; O’Brien, J.G. Impact of a global quadratic potential on galactic rotation curves. Phys. Rev. Lett. 2011, 106, 121101. [Google Scholar] [CrossRef]
- Mannheim, P.D.; O’Brien, J.G. Fitting galactic rotation curves with conformal gravity and a global quadratic potential. Phys. Rev. D 2012, 85, 124020. [Google Scholar] [CrossRef]
- O’Brien, J.G.; Chiarelli, T.L.; Dentico, J.; Stulge, M.; Stefanski, B.; Moss, R.; Chaykov, S. Alternative gravity rotation curves for the LITTLE THINGS survey. Astrophys. J. 2018, 852, 6. [Google Scholar] [CrossRef]
- Hobson, M.P.; Lasenby, A.N. Conformal gravity does not predict flat galaxy rotation curves. Phys. Rev. D 2021, 104, 64014. [Google Scholar] [CrossRef]
- Edery, A.; Paranjape, M.B. Classical tests for Weyl gravity: Deflection of light and time delay. Phys. Rev. D 1998, 58, 24011. [Google Scholar] [CrossRef]
- Pireaux, S. Light deflection in Weyl gravity: Critical distances for photon paths. Class. Quantum Grav. 2004, 21, 1897. [Google Scholar] [CrossRef]
- Pireaux, S. Light deflection in Weyl gravity: Constraints on the linear parameter. Class. Quantum Grav. 2004, 21, 4317. [Google Scholar] [CrossRef]
- Sultana, J.; Kazanas, D. Bending of light in conformal Weyl gravity. Phys. Rev. D 2010, 81, 127502. [Google Scholar] [CrossRef]
- Sultana, J.; Kazanas, D. Deflection of light to second order in conformal Weyl gravity. J. Cosmol. Astropart. Phys. (JCAP) 2013, 4, 48. [Google Scholar] [CrossRef]
- Villanueva, J.R.; Olivares, M. On the null trajectories in conformal Weyl gravity. J. Cosmol. Astropart. Phys. (JCAP) 2013, 6, 40. [Google Scholar] [CrossRef]
- Cattani, C.; Scalia, M.; Laserra, E.; Bochicchio, I.; Nandi, K.K. Correct light deflection in Weyl conformal gravity. Phys. Rev. D 2013, 87, 47503. [Google Scholar] [CrossRef]
- Lim, Y.-K.; Wang, Q.-H. Exact gravitational lensing in conformal gravity and Schwarzschild–de Sitter spacetime. Phys. Rev. D 2017, 95, 24004. [Google Scholar] [CrossRef]
- Campigotto, M.C.; Diaferio, A.; Fatibene, L. Conformal gravity: Light deflection revisited and the galactic rotation curve failure. Class. Quantum Grav. 2019, 36, 245014. [Google Scholar] [CrossRef]
- Kaşikçi, O.; Deliduman, C. Gravitational lensing in Weyl gravity. Phys. Rev. D 2019, 100, 24019. [Google Scholar] [CrossRef]
- Turner, G.E.; Horne, K. Null geodesics in conformal gravity. Class. Quantum Grav. 2020, 37, 95012. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, Z. Generalized Gibbons-Werner method for deflection angle. Phys. Rev. D 2022, 106, 104043. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Werner, M.C. Applications of the Gauss-Bonnet theorem to gravitational lensing. Class. Quantum Grav. 2008, 25, 235009. [Google Scholar] [CrossRef]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Kitamura, T.; Asada, H. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D 2010, 94, 84015. [Google Scholar] [CrossRef]
- Toshiaki, O.; Hideki, A. The Effects of finite distance on the gravitational deflection angle of light. Universe 2019, 5, 218. [Google Scholar]
- Takizawa, K.; Ono, T.; Asada, H. Gravitational deflection angle of light: Definition by an observer and its application to an asymptotically nonflat spacetime. Phys. Rev. D 2020, 101, 104032. [Google Scholar] [CrossRef]
- Takizawa, K.; Ono, T.; Asada, H. Gravitational lens without asymptotic flatness: Its application to Weyl gravity. Phys. Rev. D 2020, 102, 64060. [Google Scholar]
- Mannheim, P.D.; Kazanas, D. Solutions to the Reissner-Nordström, Kerr, and Kerr-Newman problems in fourth-order conformal Weyl gravity. Phys. Rev. D 1991, 44, 417. [Google Scholar] [CrossRef] [PubMed]
- Mannheim, P.D. Conformal cosmology with no cosmological constant. Gen. Relativ. Gravit. 1990, 22, 289. [Google Scholar] [CrossRef]
- Mannheim, P.D. Conformal Gravity and the flatness problem. Astrophys. J. 1992, 391, 429. [Google Scholar] [CrossRef]
- Mannheim, P.D.; Kazanas, D. Newtonian limit of conformal gravity and the lack of necessity of the second order Poisson equation. Gen. Relativ. Gravit. 1994, 26, 337. [Google Scholar] [CrossRef]
- Said, J.L.; Sultana, J.; Zarb Adami, K. Exact static cylindrical solution to conformal Weyl gravity. Phys. Rev. D 2012, 85, 104054. [Google Scholar] [CrossRef]
- Said, J.L.; Sultana, J.; Zarb Adami, K. Charged cylindrical black holes in conformal gravity. Phys. Rev. D 2012, 86, 104009. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D 2014, 70, 83509. [Google Scholar] [CrossRef]
- Sultana, J.; Kazanas, D.; Said, J.L. Conformal Weyl gravity and perihelion precession. Phys. Rev. D 2012, 86, 84008. [Google Scholar] [CrossRef]
- Rindler, W. Relativity: Special, General, and Cosmological, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Wald, R.M. General Relativity; The University of Chicago Press: Chigago, IL, USA, 1984. [Google Scholar]
- Do Carmo, M.P. Differential Geometry of Curves and Surfaces; Prentice-Hall: Upper Saddle River, NJ, USA, 1976. [Google Scholar]
- Edery, A.; Méthot, A.A.; Paranjape, M.B. Gauge choice and geodetic deflection in conformal gravity. Gen. Relativ. Grav. 2001, 33, 2075. [Google Scholar] [CrossRef]
- Sultana, J.; Kazanas, D. Gauge choice in conformal gravity. Mon. Not. R. Astron. Soc. (MNRAS) 2017, 466, 4847. [Google Scholar] [CrossRef]
- Guenouche, M.; Zouzou, S.R. Deflection of light and time delay in closed Einstein-Straus solution. Phys. Rev. D 2018, 98, 123508. [Google Scholar] [CrossRef]
- Smail, I.; Ellis, R.; Fitchett, M.; Norgaard-Nielsen, H.; Hansen, L.; Jorgensen, H. A statistically complete survey for arc-like features in images of distant rich clusters of galaxies. Mon. Not. R. Astron. Soc. (MNRAS) 1991, 252, 19. [Google Scholar] [CrossRef]
- Allen, S. Resolving the discrepancy between X-ray and gravitational lensing mass measurements for clusters of galaxies. Mon. Not. R. Astron. Soc. (MNRAS) 1998, 296, 392. [Google Scholar] [CrossRef]
- The Planch Collaboration Planck 2018 results VI. Cosmological parameters. Astro. Astrophys. 2020, 641, A6.
- Einstein, A.; Straus, G.E. The influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys. 1945, 17, 120. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Garipova, G.M.; Laserra, E.; Bhadra, A.; Nandi, K.M. The vacuole model: New terms in the second order deflection of light. J. Cosmol. Astropart. Phys. (JCAP) 2011, 2, 28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, J. Gravitational Light Bending in Weyl Gravity and Schwarzschild–de Sitter Spacetime. Symmetry 2024, 16, 101. https://doi.org/10.3390/sym16010101
Sultana J. Gravitational Light Bending in Weyl Gravity and Schwarzschild–de Sitter Spacetime. Symmetry. 2024; 16(1):101. https://doi.org/10.3390/sym16010101
Chicago/Turabian StyleSultana, Joseph. 2024. "Gravitational Light Bending in Weyl Gravity and Schwarzschild–de Sitter Spacetime" Symmetry 16, no. 1: 101. https://doi.org/10.3390/sym16010101
APA StyleSultana, J. (2024). Gravitational Light Bending in Weyl Gravity and Schwarzschild–de Sitter Spacetime. Symmetry, 16(1), 101. https://doi.org/10.3390/sym16010101