Statistical Analysis and Several Estimation Methods of New Alpha Power-Transformed Pareto Model with Applications in Insurance
Abstract
:1. Introduction
- The NAPT-Par distribution is adequate for fitting different types data due to its flexibility and utility.
- Another crucial motivation is that the proposed distribution offers mechanisms to introduce or manipulate skewness, allowing for the modeling of datasets where asymmetry is inherent or desired.
- A paramount goal of the NAPT-Par model is to provide several classical estimation procedures to estimate the unknown parameters of the recommended distribution, and a simulation analysis is performed to evaluate the estimator’s performance. Moreover, the final aim is to explore four well-known risk measures of the proposed NAPT-Par model, notably the value at risk (VaR), Tail VaR (TVaR), tail variance (TV), and tail variance premium (TVP).
- the NAPT-Par model can capture various shapes and patterns in data, which often results in better goodness-of-fit compared to other distributions.
2. Model Formulation
- Furthermore, the survival function (sf) and hazard rate function (hrf) of the random variable Z are obtained:
- Henceforth, the cumulative hrf with the reversed hrf of the random variable Z are written as follows:
3. Some Statistical Properties of NAPT-Par Model
3.1. Quantile Function
- The median of Z is given by
3.2. Useful Expansion
3.3. The Moment of the NAPT-Par
- Consequently, the expected value (mean) and variance of Z are
3.4. Order Statistics
4. Parameter Estimation Procedures
4.1. Maximum Likelihood Estimation (MLE)
4.2. Least Squares Estimator (LSE)
4.3. Weighted Least Squares Estimator (WLSE)
4.4. Maximum Product of Spacings (MPS)
4.5. Cramer-Von Mises Method of Estimation (CVE)
4.6. Anderson–Darling Method of Estimation (ADE)
5. Simulation Experiment Study
- The samples are obtained through the application of the quantile function, given by
- As n continues to increase, the AE is observed to approach the initial value of parameters for all estimates procedures, which shows that all techniques are asymptotically unbiased.
- As n continues to increase, the MSE values decline, showing that all techniques are consistent.
- Since the MSE values of the MLE method are smaller, the MLE technique outperforms other proposed tools.
6. Actuarial Metrics
6.1. VaR Metric
6.2. TVaR Metric
6.3. TV Mteric
6.4. TVP Metric
6.5. Simulation Results of the Risk Measures for the NAPT-Par Model
7. Statistical Modeling
7.1. Dataset 1
7.2. Dataset 2
7.3. Dataset 3
- A summary of statistics and some non-parametric plots of the proposed three datasets, notably the scaled total time on the test (TTT), Q-Q, and box plots, were depicted, respectively, in Table 10 and Figure 7. It is well known that the scaled TTT transform plot indicates the shape of the hazard function. For example, if the plot is a concave (convex) function, then it indicates that the hrf function is an increasing (decreasing) function. The TTT plot demonstrates that the hrfs for the three datasets are monotonically increasing. It also demonstrates that the NAPT-Par has a asymmetric bimodal density with a right tail.
Dataset | Median | Mean | ID | ||||
---|---|---|---|---|---|---|---|
1 | 60.0 | 71.52 | 69.25 | 83.08 | 3.1232 | 0.7244 | 0.0749 |
2 | 36.104 | 41.345 | 42.477 | 53.430 | 4.4251 | 0.8688 | 1.4129 |
3 | 65.97 | 127.00 | 187.37 | 202.00 | 1.0235 | 1.7327 | 2.3258 |
- Henceforth, we consider certain fitted distributions to select the more suitable model for analyzing the three real datasets. For this purpose, we consider power inverse Nadarajah Haghighi (PINH, [37]), Burr X (BurXD, [38]), Truncated Poisson Lindley (TPLind, [39]), Truncated Poisson log-normal (TPLN, [40]), and Truncated Poisson exponential (TPExp, [41]) models. The fitted cdfs of the comparison models can be formulated by
- BurXD:
- TPLN:
- TPExp:
- TPLind:
- PINH:
- Further, the suggested datasets were used to estimate the unknown parameters using the proposed estimation method. Table 12 reported the obtained results.
Data | Parameters | |||||
---|---|---|---|---|---|---|
47.497 | 45.301 | 44.297 | 48.568 | 41.038 | ||
1 | 4.7525 | 5.1417 | 4.2351 | 4.8083 | 3.9132 | |
33.8735 | 34.892 | 37.463 | 34.210 | 30.302 | ||
24.743 | 22.389 | 21.694 | 26.138 | 25.851 | ||
2 | 4.5329 | 4.5587 | 4.5438 | 4.5197 | 4.5637 | |
49.684 | 49.781 | 49.718 | 49.704 | 49.735 | ||
0.8327 | 0.8719 | 0.8368 | 0.8411 | 0.8479 | ||
3 | 7.9237 | 7.9008 | 7.9164 | 7.9185 | 7.9209 | |
332.97 | 331.52 | 330.87 | 333.49 | 333.51 |
- At the end, we performed the values of risk measures of the NAPT-Par and Par model by applying the three datasets. Table 13 reported the obtained results. From Table 13, the risk measure values of the NAPT-Par distribution are approaches to their associated empirical values for the three datasets. Thus, the proposed model is the best distribution for modeling the suggested datasets.
8. Conclusions
- The following are some future research directions:
- We plan to explore and apply various goodness-of-fit (GOF) statistical tests for right-censored distributional validation.
- Investigate the extension of the proposed novel probabilistic Pareto model to the multivariate setting. Explore the mathematical properties and implications of incorporating different copulas to model dependencies among multiple variables.
- Researchers may compare the proposed NAPT-Par model with other asymmetric well-known distributions to determine its advantages and limitations in capturing the features of complex data.
- Future research might explore Bayesian methods to estimate the model parameters, especially when dealing with limited data or incorporating prior information into the estimation process.
9. Limitations of Study
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Takyi-Aninakwa, P.; Jin, S.; Yu, C.; Fernandez, C.; Stroe, D.I. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation. Energy 2022, 254, 124224. [Google Scholar] [CrossRef]
- Wang, S.; Gao, H.; Takyi-Aninakwa, P.; Guerrero, J.; Fernandez, C.; Huang, Q. Improved multiple feature-electrochemical thermal coupling modeling of lithium-ion batteries at low-temperature with real-time coefficient correction. Protection and control of modern power systems. Prot. Control. Mod. Power Syst. 2024, 9, 157–173. [Google Scholar] [CrossRef]
- Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications. Commun. Stat. Theory Methods 2002, 31, 497–512. [Google Scholar] [CrossRef]
- Amal, H.; Said, G.N. The inverse Weibull-G family. J. Data Sci. 2018, 723–742. [Google Scholar] [CrossRef]
- Corderio, G.; Ortega, E.; Cunha, D. The exponentiated generalized class of distributions. J. Data Sci. 2013, 11, 1–27. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
- Zagrafos, K.; Balakrishnan, N. On families of beta-and generalized gamma-generated distributions and associated inference. Stat. Methodol. 2009, 6, 344–362. [Google Scholar] [CrossRef]
- Morad, A.; Gauss, M.C. The Gompertz-G family of distributions. J. Stat. Theory Pract. 2017, 11, 179–207. [Google Scholar]
- Brito, E.; Cordeiro, G.M.; Yousuf, H.M.; Alizadeh, M.; Silva, G.O. The Topp-Leone odd log-logistic family of distributions. J. Stat. Comput. Simul. 2017, 87, 3040–3058. [Google Scholar] [CrossRef]
- Thomas, B.; Chacko, V.M. Power Generalized Dus Transformation In Weibull And Lomax Distributions. Reliab. Theory Appl. 2023, 18, 368–384. [Google Scholar]
- Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions. Metron 2013, 71, 63–79. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Meraou, M.A. Application of Environmental Data with New Extension of Nadarajah-Haghighi Distribution. Comput. J. Math. Stat. Sci. 2022, 1, 26–41. [Google Scholar] [CrossRef]
- Barry, C.A. Pareto Distributions; International Cooperative Publishing House: Burtonville, MD, USA, 1983; ISBN 978-0-89974-012-6. [Google Scholar]
- Majid, M.H.A.; Ibrahim, K.; Masseran, N. Three-Part Composite Pareto Modelling for Income Distribution in Malaysia. Mathematics 2023, 11, 2899. [Google Scholar] [CrossRef]
- Akinsete, A.; Famoye, F.; Lee, C. The beta-Pareto distribution. Stat. J. Theor. Appl. Stat. 2008, 42, 547–563. [Google Scholar] [CrossRef]
- Bourguignon, M.; Silva, R.B.; Zea, L.M.; Cordeiro, G.M. The Kumaraswamy Pareto distribution. J. Stat. Theory Appl. 2013, 12, 129–144. [Google Scholar] [CrossRef]
- Chhetri, S.B.; Long, H.; Aryal, G. The Beta transmuted Pareto distribution: Theory andapplications. J. Stat. Appl. Probab. 2017, 6, 243–258. [Google Scholar] [CrossRef]
- Mahdavi, A.; Kundu, D. A new method for generating distributions with an application to exponential distribution. Commun. Stat. Theory Methods 2017, 46, 6543–6557. [Google Scholar] [CrossRef]
- Nassar, M.; Alzaatreh, A.; Mead, M.; Abo-Kasem, O. Alpha power Weibull distribution: Properties and applications. Commun. Stat. Theory Methods 2017, 46, 10236–10252. [Google Scholar] [CrossRef]
- Dey, A.; Alzaatreh, A.; Zhang, C.; Kumar, D. A new extension of generalized exponential distribution with application to ozone data. Ozone: Sci. Eng. 2017, 39, 273–285. [Google Scholar] [CrossRef]
- Eghwerido, J.T.; Zelibe, S.C.; Efe-eyefia, E. Gompertz-alpha power inverted exponential distribution: Properties and applications. J. Thail. Stat. 2019, in press. [Google Scholar]
- Hassan, A.; Elgarhy, M.; Rokaya, M.; Sharifah, A. On the Alpha Power Transformed Power Lindley Distribution. Hindawi J. Probab. Stat. 2019, 8024769. [Google Scholar] [CrossRef]
- Shivanshi, S.; Abhimanyu, A.; Srinivas, R.; Mahendra, S.; Harsh, T. Alpha Power Transformed Xgamma Distribution and Applications to Reliability, Survival and Environmental Data. J. Sci. Res. 2022, 66, 330–346. [Google Scholar] [CrossRef]
- Hassan, A.; Mohamd, E.; Elgarhy, M.; Aisha, F. Alpha power transformed extended exponential distribution: Properties and applications. J. Non-Linear Sci. Appl. 2019, 12, 239–251. [Google Scholar] [CrossRef]
- Fatehi, Y.; Chhaya, D. Alpha Power Transformed Extended power Lindley Distribution. J. Stat. Theory Appl. 2022, 22, 1–18. [Google Scholar] [CrossRef]
- Reyad, H.; Jamal, F.; Gholamhossein, H.; Soha, O. The Alpha Power Transformed Dagum Distribution: Properties and Applications. Eur. J. Stat. 2021, 1, 108–131. [Google Scholar] [CrossRef]
- Swain, J.; Venkatraman, S.; Wilson, J. Least-squares estimation of distribution functions in johnson’s translation system. J. Stat. Comput. Simul. 1988, 29, 271–297. [Google Scholar] [CrossRef]
- Macdonald, P.D.M. Comments and Queries Comment on “An Estimation Procedure for Mixtures of Distributions” by Choi and Bulgren. J. R. Stat. Soc. Ser. B Methodol. 1971, 33, 326–329. [Google Scholar] [CrossRef]
- Meraou, M.A.; Al-Kandari, N.; Raqab, M.Z.; Kundu, D. Analysis of skewed data by using compound Poisson exponential distribution with applications to insurance claims. J. Stat. Comput. Simul. 2021, 92, 928–956. [Google Scholar] [CrossRef]
- Meraou, M.A.; Al-Kandari, N.; Raqab, M.Z. Univariate and bivariate compound models based on random sum of variates with application to the insurance losses data. J. Stat. Theory Pract. 2022, 16, 1–30. [Google Scholar] [CrossRef]
- Afify, A.Z.; Gemeay, A.M.; Ibrahim, N.A. The heavy-tailed exponential distribution: Risk measures, estimation, and application to actuarial data. Mathematics 2020, 8, 1276. [Google Scholar] [CrossRef]
- Teamah, M.; Elbanna, M.; Gemeay, A. Heavy-tailed log-logistic distribution: Properties, risk measures and applications. Stat. Optim. Inf. Comput. 2021, 9, 910–941. [Google Scholar] [CrossRef]
- Riad, F.; Hussam, E.; Gemeay, A.; Aldallal, R.; Afify, A. Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data. Math. Biosci. Eng. 2022, 19, 6551–6581. [Google Scholar] [CrossRef] [PubMed]
- Emam, W. Benefiting from statistical modeling in the analysis of current health expenditure to gross domestic product. AIMS Math. 2023, 8, 12398–12421. [Google Scholar] [CrossRef]
- Muqrin, A. Bayesian and non-Bayesian inference for the compound Poisson log-normal model with application in finance. Alex. Eng. J. 2024, 90, 24–43. [Google Scholar] [CrossRef]
- Ceren, U.N.; Cakmakyapan, S.; Gamze, E.L. Alpha power inverted exponential distribution: Properties and application. Gazi Univ. J. Sci. 2018, 31, 954–965. [Google Scholar]
- Muhammad, A.; Junaid, A.; Albassam, M.; Aslam, M. Power Inverted Nadarajah—Haghighi Distribution: Properties, Estimation, and Applications. J. Math. 2022, 10, 9514739. [Google Scholar] [CrossRef]
- Surles, J.; Padgett, W. Some properties of a scaled Burr type X distribution. J. Stat. Plan. Inference 2005, 128, 271–280. [Google Scholar] [CrossRef]
- Meraou, M.A.; Raqab, M.Z. Statistical properties and different estimation procedures of poisson Lindley distribution. J. Stat. Theory Appl. 2021, 20, 33–45. [Google Scholar] [CrossRef]
- Meraou, M.A.; Raqab, M.Z.; Kundu, D.; Alqallaf, F. Inference for compound truncated Poisson log-normal model with application to maximum precipitation data. Commun. Stat. Simul. Comput. 2024, 1–22. [Google Scholar] [CrossRef]
- Cancho, V.G.; Louzada-Neto, F.; Barriga, G.D. Poisson exponential lifetime distribution. Comput. Stat. Data Anal. 2011, 55, 677–686. [Google Scholar] [CrossRef]
V | ID | ||||
---|---|---|---|---|---|
= 2 3 | 2.6433 | 1.6734 | 0.6331 | 9.8944 | 307.896 |
6 | 2.2631 | 0.165 | 0.0729 | 4.0128 | 30.177 |
9 | 2.1655 | 0.0574 | 0.0265 | 3.3245 | 18.362 |
12 | 2.1207 | 0.0288 | 0.0136 | 3.0614 | 14.827 |
= 4 3 | 5.2866 | 6.6935 | 1.2661 | 9.8944 | 307.896 |
6 | 4.5262 | 0.6602 | 0.1459 | 4.0128 | 30.177 |
9 | 4.3309 | 0.2298 | 0.0531 | 3.3245 | 18.362 |
12 | 4.2414 | 0.1154 | 0.0272 | 3.0614 | 14.827 |
= 6 3 | 7.9299 | 15.0603 | 1.8992 | 9.8944 | 307.896 |
6 | 6.7892 | 1.4854 | 0.2188 | 4.0128 | 30.177 |
9 | 6.4964 | 0.5170 | 0.0796 | 3.3245 | 18.362 |
12 | 6.3621 | 0.2596 | 0.0408 | 3.0614 | 14.827 |
V | ID | ||||
---|---|---|---|---|---|
= 2 3 | 3.0702 | 2.889 | 0.9410 | 8.8719 | 258.264 |
6 | 2.4267 | 0.2512 | 0.1035 | 3.3636 | 22.196 |
9 | 2.2664 | 0.0843 | 0.0372 | 2.7186 | 12.867 |
12 | 2.1936 | 0.0416 | 0.019 | 2.4707 | 10.110 |
= 4 3 | 6.1403 | 11.556 | 1.8820 | 8.8719 | 258.264 |
6 | 4.8535 | 1.0049 | 0.2070 | 3.3636 | 22.196 |
9 | 4.5328 | 0.3371 | 0.0744 | 2.7186 | 12.867 |
12 | 4.3872 | 0.1663 | 0.0379 | 2.4707 | 10.110 |
= 6 3 | 9.2105 | 26.001 | 2.8230 | 8.8719 | 258.264 |
6 | 7.2802 | 2.2610 | 0.3106 | 3.3636 | 22.196 |
9 | 6.7991 | 0.7584 | 0.1115 | 2.7186 | 12.867 |
12 | 6.5808 | 0.3742 | 0.0569 | 2.4707 | 10.110 |
n | Method | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AE | AB | MSE | AE | AB | MSE | AE | AB | MSE | ||||||||
25 | 0.8722 | 0.0222 | 0.0007 | 0.5475 | 0.0475 | 0.0157 | 1.9871 | 0.0128 | 0.0807 | |||||||
0.8244 | 0.0255 | 0.0044 | 0.5389 | 0.0389 | 0.0311 | 2.1824 | 0.1824 | 0.2619 | ||||||||
0.8319 | 0.0180 | 0.0059 | 0.4876 | 0.0123 | 0.0475 | 2.0850 | 0.0850 | 0.2802 | ||||||||
0.2603 | 0.0103 | 0.0020 | 0.4957 | 0.0042 | 0.0281 | 2.0863 | 0.0863 | 0.2018 | ||||||||
0.8655 | 0.0155 | 0.0023 | 0.4347 | 0.0652 | 0.0199 | 1.7637 | 0.2362 | 0.1360 | ||||||||
0.2457 | 0.6042 | 0.4925 | 0.4061 | 0.0938 | 0.0753 | 1.8016 | 0.1983 | 0.3972 | ||||||||
50 | 0.8614 | 0.0114 | 0.0005 | 0.5192 | 0.0192 | 0.0052 | 1.9940 | 0.0059 | 0.0317 | |||||||
0.8381 | 0.0118 | 0.0039 | 0.4483 | 0.0516 | 0.0223 | 2.0253 | 0.0253 | 0.2328 | ||||||||
0.8423 | 0.0076 | 0.0056 | 0.4844 | 0.0155 | 0.0324 | 2.035 | 0.035 | 0.2445 | ||||||||
0.8683 | 0.0183 | 0.0016 | 0.4938 | 0.0061 | 0.0086 | 1.8139 | 0.1860 | 0.0590 | ||||||||
0.8747 | 0.0247 | 0.0015 | 0.5050 | 0.0050 | 0.0159 | 1.9911 | 0.0088 | 0.0539 | ||||||||
0.3910 | 0.2589 | 0.2504 | 0.3195 | 0.1804 | 0.0355 | 1.8938 | 0.0061 | 0.3516 | ||||||||
75 | 0.8619 | 0.0119 | 0.0003 | 0.5478 | 0.0478 | 0.0042 | 2.0187 | 0.0187 | 0.0176 | |||||||
0.8482 | 0.0017 | 0.0032 | 0.4762 | 0.02378 | 0.0069 | 2.0539 | 0.0539 | 0.1208 | ||||||||
0.8461 | 0.0038 | 0.0042 | 0.4603 | 0.0396 | 0.0079 | 1.9661 | 0.0338 | 0.1500 | ||||||||
0.8544 | 0.0044 | 0.0008 | 0.4842 | 0.0157 | 0.0048 | 1.9414 | 0.0585 | 0.0196 | ||||||||
0.8651 | 0.0151 | 0.0006 | 0.4683 | 0.0316 | 0.0157 | 1.8970 | 0.1029 | 0.0111 | ||||||||
0.7289 | 0.1211 | 0.1529 | 0.4342 | 0.0618 | 0.0321 | 1.9277 | 0.0723 | 0.2356 | ||||||||
100 | 0.8506 | 0.0006 | 0.0001 | 0.5180 | 0.0180 | 0.0007 | 2.0282 | 0.0282 | 0.0091 | |||||||
0.8382 | 0.0117 | 0.0007 | 0.5191 | 0.0191 | 0.0037 | 2.1477 | 0.1477 | 0.0674 | ||||||||
0.8691 | 0.0191 | 0.0032 | 0.5123 | 0.0123 | 0.0062 | 0.5212 | 0.0212 | 0.0041 | ||||||||
0.8571 | 0.0071 | 0.0005 | 0.4784 | 0.0215 | 0.0013 | 1.9583 | 0.0416 | 0.0173 | ||||||||
0.8545 | 0.0045 | 0.0004 | 0.5330 | 0.0330 | 0.0011 | 2.0888 | 0.0888 | 0.0106 | ||||||||
0.7723 | 0.0773 | 0.0925 | 0.4841 | 0.0159 | 0.0294 | 1.9729 | 0.0271 | 0.1241 |
n | Method | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AE | AB | MSE | AE | AB | MSE | AE | AB | MSE | ||||||||
25 | 1.0311 | 0.0311 | 0.0073 | 0.9074 | 0.1574 | 0.0711 | 1.9452 | 0.3547 | 0.2026 | |||||||
1.0066 | 0.0066 | 0.0128 | 0.8026 | 0.0526 | 0.1216 | 2.7011 | 0.4011 | 1.7191 | ||||||||
0.9701 | 0.0298 | 0.0145 | 0.9141 | 0.1641 | 0.1482 | 2.8453 | 0.5453 | 2.4655 | ||||||||
1.0830 | 0.0830 | 0.0119 | 0.6733 | 0.0766 | 0.0879 | 2.0292 | 0.2707 | 0.2537 | ||||||||
0.9979 | 0.0020 | 0.0123 | 0.8638 | 0.1138 | 0.0882 | 2.8908 | 0.5908 | 0.2950 | ||||||||
0.2062 | 0.7937 | 0.7833 | 0.4988 | 0.2511 | 0.2767 | 2.9385 | 0.6385 | 3.4141 | ||||||||
50 | 1.0185 | 0.0185 | 0.0014 | 0.7173 | 0.0326 | 0.0154 | 2.0668 | 0.2331 | 0.1474 | |||||||
0.9716 | 0.0283 | 0.0070 | 0.7329 | 0.0170 | 0.0559 | 2.6513 | 0.3513 | 0.8264 | ||||||||
0.9785 | 0.0214 | 0.0059 | 0.8049 | 0.0549 | 0.0440 | 2.7088 | 0.4088 | 0.9355 | ||||||||
1.0302 | 0.0302 | 0.0023 | 0.6311 | 0.1188 | 0.0206 | 1.9985 | 0.3014 | 0.1986 | ||||||||
0.9876 | 0.0123 | 0.0033 | 0.7889 | 0.03897 | 0.0429 | 2.5659 | 0.2659 | 0.2838 | ||||||||
0.1741 | 0.8258 | 0.6884 | 0.5328 | 0.2171 | 0.1588 | 1.9327 | 0.3672 | 1.4878 | ||||||||
75 | 1.0113 | 0.0113 | 0.0002 | 0.7419 | 0.0080 | 0.0061 | 2.0891 | 0.2108 | 0.0895 | |||||||
0.9790 | 0.020 | 0.0059 | 0.7274 | 0.0225 | 0.0327 | 2.3480 | 0.0480 | 0.4795 | ||||||||
0.9899 | 0.010 | 0.0017 | 0.7705 | 0.0205 | 0.0310 | 2.6016 | 0.3016 | 0.4383 | ||||||||
1.0152 | 0.0152 | 0.0006 | 0.6836 | 0.0663 | 0.0238 | 2.0259 | 0.2740 | 0.1118 | ||||||||
0.9851 | 0.0148 | 0.0008 | 0.7930 | 0.0430 | 0.0300 | 2.4752 | 0.1752 | 0.2152 | ||||||||
0.3222 | 0.6777 | 0.6590 | 0.6799 | 0.0401 | 0.1425 | 2.8221 | 0.5221 | 1.1142 | ||||||||
100 | 1.0076 | 0.0076 | 0.0001 | 0.7367 | 0.0132 | 0.0034 | 2.3036 | 0.0036 | 0.0397 | |||||||
1.0135 | 0.0135 | 0.0025 | 0.7358 | 0.0141 | 0.0132 | 2.2810 | 0.0189 | 0.3020 | ||||||||
0.9998 | 0.0001 | 0.0011 | 0.7593 | 0.0093 | 0.0234 | 2.2676 | 0.0323 | 0.0717 | ||||||||
1.0085 | 0.0085 | 0.0003 | 0.7421 | 0.0078 | 0.0045 | 2.2052 | 0.0947 | 0.0548 | ||||||||
0.9901 | 0.0098 | 0.0007 | 0.7785 | 0.0285 | 0.0063 | 2.3779 | 0.07796 | 0.1223 | ||||||||
0.6203 | 0.3797 | 0.3995 | 0.7091 | 0.0408 | 0.1204 | 2.8369 | 0.5369 | 0.4652 |
Model | Parameters | q | ||||
---|---|---|---|---|---|---|
NAPT-Par | 0.70 | 3.979 | 7.063 | 29.579 | 27.769 | |
0.75 | 4.3205 | 7.6479 | 33.445 | 32.730 | ||
0.80 | 4.7766 | 8.4258 | 38.777 | 39.447 | ||
0.85 | 5.4343 | 9.5401 | 46.724 | 49.256 | ||
0.90 | 6.5145 | 11.349 | 60.220 | 65.547 | ||
0.95 | 8.8742 | 15.198 | 90.356 | 101.037 | ||
Par | 0.70 | 3.8421 | 6.7967 | 27.693 | 26.182 | |
0.75 | 4.1664 | 7.3566 | 31.350 | 30.869 | ||
0.80 | 4.6008 | 8.1027 | 36.399 | 37.222 | ||
0.85 | 5.2283 | 9.1727 | 43.942 | 46.524 | ||
0.90 | 6.260 | 10.911 | 56.795 | 62.028 | ||
0.95 | 8.5195 | 14.620 | 85.677 | 96.013 |
Model | Parameters | q | ||||
---|---|---|---|---|---|---|
NAPT-Par | 0.70 | 8.0653 | 17.548 | 195.701 | 154.539 | |
0.75 | 9.1609 | 19.341 | 215.542 | 180.997 | ||
0.80 | 10.689 | 21.706 | 241.398 | 214.825 | ||
0.85 | 13.018 | 25.021 | 277.758 | 261.116 | ||
0.90 | 17.146 | 30.106 | 338.372 | 334.642 | ||
0.95 | 27.352 | 38.932 | 512.671 | 525.971 | ||
Par | 0.70 | 6.6943 | 14.860 | 161.729 | 128.071 | |
0.75 | 7.5595 | 16.411 | 179.626 | 151.131 | ||
0.80 | 8.7720 | 18.482 | 203.060 | 180.930 | ||
0.85 | 10.626 | 21.435 | 235.784 | 221.852 | ||
0.90 | 13.924 | 26.107 | 287.742 | 285.075 | ||
0.95 | 22.104 | 34.978 | 412.776 | 427.116 |
48.2 | 48.2 | 55.6 | 49.4 | 54.7 | 84.4 | 85.6 | 92.1 | 115.7 | 92.7 | 87.4 | 104.1 | 86.6 | 96.7 |
74.1 | 70.4 | 84 | 80.3 | 86.5 | 86.9 | 104.7 | 74.3 | 66.7 | 79.1 | 65.7 | 78.6 | 59.9 | 59 |
72.6 | 66.6 | 89.9 | 75.2 | 72.1 | 63.2 | 70.3 | 58.9 | 59.7 | 72.6 | 55.3 | 62.6 | 55.5 | 60.4 |
84.2 | 68.9 | 65.2 | 70 | 56.6 | 56.3 | 71.9 | 60.3 | 54, 65.2 | 56.3 | 69.6 | 68.8 | 66 | 63.5 |
64.9 |
42.1159410 | 44.6173573 | 42.4937630 | 39.7909737 | 35.8400607 | |
34.1867280 | 36.1922503 | 35.6228733 | 29.7100425 | 42.9041958 | |
36.4785600 | 37.1177721 | 40.1962376 | 44.6568298 | 52.2795486 | |
59.9834490 | 58.3562946 | 62.6256323 | 57.4845695 | 56.8828773 |
12.20 | 23.56 | 23.74 | 25.87 | 31.98 | 37 | 41.35 | 47.38 | 55.46 | 58.36 |
63.47 | 68.46 | 78.26 | 74.47 | 81.43 | 84 | 92 | 94 | 110 | 112 |
119 | 127 | 130 | 133 | 140 | 146 | 155 | 159 | 173 | 179 |
194 | 195 | 209 | 249 | 281 | 319 | 339 | 432 | 469 | 519 |
633 | 725 | 817 |
Data | Distribution | -Value | ||||||
---|---|---|---|---|---|---|---|---|
NAPT-Par | 44.544 | 4.6620 | 76.957 | 0.0934 | 0.6914 | 481.028 | 487.209 | |
PINH | 6061.75 | 933.85 | 3.8538 | 0.1049 | 0.5452 | 484.328 | 490.509 | |
TPLN | 5.2787 | 0.4761 | 41.589 | 0.1026 | 0.5744 | 482.184 | 488.366 | |
1 | TPExp | 0.0517 | 26.273 | 0.1485 | 0.1548 | 493.665 | 497.786 | |
Par | 5.7369 | 0.3861 | 0.5603 | 3.33 | 719.425 | 723.546 | ||
BurXD | 0.0021 | 1.4294 | 0.2824 | 0.0001 | 510.927 | 515.047 | ||
TPLind | 0.0673 | 14.255 | 0.1393 | 0.2104 | 489.537 | 493.658 | ||
NAPT-Par | 27.678 | 4.5090 | 49.720 | 0.1209 | 0.8981 | 152.155 | 155.142 | |
PINH | 135.703 | 120.570 | 2.7258 | 0.2054 | 0.3221 | 155.896 | 158.883 | |
TPLN | 3.6550 | 0.2314 | 1.8068 | 0.1580 | 0.6438 | 152.623 | 155.610 | |
2 | TPExp | 0.0669 | 12.255 | 0.2388 | 0.1731 | 160.912 | 162.903 | |
Par | 29.475 | 2.4721 | 0.2739 | 0.0811 | 157.124 | 159.115 | ||
BurXD | 0.0328 | 0.89592 | 0.4039 | 0.0018 | 174.493 | 176.485 | ||
TPLind | 0.0937 | 8.2562 | 0.2177 | 0.2593 | 157.876 | 159.868 | ||
NAPT-Par | 0.8572 | 7.9343 | 334.21 | 0.1186 | 0.5405 | 537.577 | 542.861 | |
PINH | 52.544 | 0.2261 | 0.6795 | 0.1357 | 0.3730 | 552.007 | 557.291 | |
TPLN | 0.3492 | 5.8578 | 10.247 | 0.1324 | 0.4023 | 542.679 | 552.861 | |
3 | TPExp | 0.0086 | 2.3503 | 0.149 | 0.2678 | 544.912 | 548.435 | |
Par | 0.4162 | 11.214 | 0.2998 | 0.0006 | 575.730 | 579.252 | ||
BurXD | 0.0356 | 0.6259 | 0.1374 | 0.3577 | 541.156 | 544.678 | ||
TPLind | 0.0127 | 1.2503 | 0.2048 | 0.0464 | 554.6856 | 558.208 |
Data | Model | Parameters | q | ||||
---|---|---|---|---|---|---|---|
Empirical | 0.55 | 73.398 | 84.666 | 75.254 | 126.056 | ||
0.65 | 77.279 | 87.337 | 64.291 | 129.127 | |||
0.75 | 81.601 | 90.518 | 53.976 | 131.001 | |||
0.85 | 87.011 | 94.752 | 43.534 | 131.756 | |||
1 | NAPT-Par | 44.544 | 0.55 | 69.161 | 90.523 | 721.410 | 487.298 |
4.6620 | 0.65 | 73.898 | 95.977 | 793.115 | 611.502 | ||
76.957 | 0.75 | 80.303 | 103.605 | 905.375 | 782.636 | ||
0.85 | 90.489 | 116.070 | 1114.7 | 1063.645 | |||
Par | 5.7369 | 0.55 | 45.378 | 160.839 | 44954.2 | 24885.6 | |
0.65 | 87.002 | 188.769 | 54247.5 | 35449.6 | |||
0.75 | 207.968 | 210.083 | 73886.7 | 55625.1 | |||
0.85 | 780.872 | 77.016 | 62139.1 | 52895.2 | |||
Empirical | 0.55 | 42.678 | 53.310 | 302.493 | 218.327 | ||
0.65 | 44.631 | 56.038 | 329.461 | 270.329 | |||
0.75 | 53.430 | 59.067 | 378.129 | 356.113 | |||
0.85 | 57.615 | 60.322 | 479.517 | 475.953 | |||
2 | NAPT-Par | 27.678 | 0.55 | 42.678 | 56.384 | 305.956 | 224.660 |
4.5090 | 0.65 | 45.682 | 59.889 | 337.883 | 279.513 | ||
49.720 | 0.75 | 49.762 | 64.805 | 387.897 | 355.728 | ||
0.85 | 56.283 | 72.871 | 481.522 | 482.165 | |||
Par | 29.475 | 0.55 | 40.713 | 67.7463 | 2166.00 | 1259.04 | |
0.65 | 45.069 | 74.884 | 2555.13 | 1735.72 | |||
0.75 | 51.641 | 85.599 | 3173.93 | 2466.04 | |||
0.85 | 63.494 | 104.756 | 4364.70 | 3814.75 | |||
Empirical | 0.55 | 133.70 | 333.315 | 187.371 | 436.370 | ||
0.65 | 163.2 | 382.200 | 191.542 | 506.702 | |||
0.75 | 202.0 | 453.818 | 191.542 | 597.475 | |||
0.85 | 333.0 | 562.00 | 191.542 | 724.811 | |||
3 | NAPT-Par | 0.8572 | 0.55 | 131.10 | 311.89 | 185.269 | 434.219 |
7.9343 | 0.65 | 161.47 | 379.579 | 188.374 | 503.981 | ||
334.21 | 0.75 | 197.268 | 449.197 | 189.067 | 592.741 | ||
0.85 | 329.197 | 558.341 | 189.643 | 719.358 | |||
Par | 0.4162 | 0.55 | 123.478 | 297.367 | 167.394 | 411.378 | |
11.214 | 0.65 | 154.297 | 334.297 | 176.218 | 456.297 | ||
0.75 | 172.974 | 384.379 | 177.397 | 529.648 | |||
0.85 | 281.397 | 453.671 | 178.397 | 642.167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsolmi, M.M.; Almulhim, F.A.; Amine, M.M.; Aljohani, H.M.; Alrumayh, A.; Belouadah, F. Statistical Analysis and Several Estimation Methods of New Alpha Power-Transformed Pareto Model with Applications in Insurance. Symmetry 2024, 16, 1367. https://doi.org/10.3390/sym16101367
Alsolmi MM, Almulhim FA, Amine MM, Aljohani HM, Alrumayh A, Belouadah F. Statistical Analysis and Several Estimation Methods of New Alpha Power-Transformed Pareto Model with Applications in Insurance. Symmetry. 2024; 16(10):1367. https://doi.org/10.3390/sym16101367
Chicago/Turabian StyleAlsolmi, Meshayil M., Fatimah A. Almulhim, Meraou Mohammed Amine, Hassan M. Aljohani, Amani Alrumayh, and Fateh Belouadah. 2024. "Statistical Analysis and Several Estimation Methods of New Alpha Power-Transformed Pareto Model with Applications in Insurance" Symmetry 16, no. 10: 1367. https://doi.org/10.3390/sym16101367
APA StyleAlsolmi, M. M., Almulhim, F. A., Amine, M. M., Aljohani, H. M., Alrumayh, A., & Belouadah, F. (2024). Statistical Analysis and Several Estimation Methods of New Alpha Power-Transformed Pareto Model with Applications in Insurance. Symmetry, 16(10), 1367. https://doi.org/10.3390/sym16101367