TMG Symmetry and Kinematic Analysis of the Impact of Different Plyometric Programs on Female Athletes’ Lower-Body Muscles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedure
2.4. Anthropometric Measurements
2.5. Body Composition Measurements
2.6. Countermovement Jump (CMJ) and Kinematic Measurements
2.7. Tensiomyography Measurement
2.8. Experimental Training Interventions
2.9. Statistical Analysis
3. Results
3.1. Anthropometric, Body Composition and CMJ Kinematics
3.2. TMG Symmetry
3.3. Effects Between Programs on TMG Symmetry
3.4. Effects Between Programs on CMJ Kinematics and Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maloney, S.J. The relationship between asymmetry and athletic performance: A critical review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef] [PubMed]
- Helme, M.; Tee, J.; Emmonds, S.; Low, C. Does lower-limb asymmetry increase injury risk in sport? A systematic review. Phys. Ther. Sport 2021, 49, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Read, P.; Chavda, S.; Turner, A. Asymmetries of the lower limb: The calculation conundrum in strength training and conditioning. Strength Cond. J. 2016, 38, 27–32. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Training methods and considerations for practitioners to reduce inter-limb asymmetries. Strength Cond. J. 2017, 40, 40–46. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
- Bettariga, F.; Turner, A.; Maloney, S.; Maestroni, L.; Jarvis, P.; Bishop, C. The effects of training interventions on inter-limb asymmetries: A systematic review with meta-analysis. Strength Cond. J. 2022, 44, 69–86. [Google Scholar] [CrossRef]
- Hewit, J.; Cronin, J.; Hume, P. Multidirectional leg asymmetry assessment in sport. Strength Cond. J. 2012, 34, 82–86. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Maloney, S.; Lake, J.; Loturco, I.; Bromley, T.; Read, P. Drop jump asymmetry is associated with reduced sprint and change-of-direction speed performance in adult female soccer players. Sports 2019, 7, 29. [Google Scholar] [CrossRef]
- Maloney, S.; Richards, J.; Nixon, D.; Harvey, L.; Fletcher, I. Do stiffness and asymmetries predict change of direction performance? J. Sports Sci. 2017, 35, 547–556. [Google Scholar] [CrossRef]
- Prvulović, N.; Čoh, M.; Čular, D.; Tomljanović, M.; Sporiš, G.; Fišer, S.Ž. Countermovement Jump in Female Sprinters: Kinetic Parameters and Asymmetry. Symmetry 2022, 14, 1130. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Mila-Villarroel, R.; Pujol-Marzo, M.; Arboix-Alio, J.; Bishop, C. Higher vertical jumping asymmetries and lower physical performance are indicators of increased injury incidence in youth team-sport athletes. J. Strength Cond. Res. 2022, 36, 2204–2211. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.F.; Connolly, D.A.J.; Beynnon, B.D. Risk factors for lower extremity injury: A review of the literature. Br. J. Sports Med. 2003, 37, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Prodromos, C.C.; Han, Y.; Rogowski, J.; Joyce, B.; Shi, K. A Meta-analysis of the Incidence of Anterior Cruciate Ligament Tears as a Function of Gender, Sport, and a Knee Injury–Reduction Regimen. Arthrosc. J. Arthrosc. Relat. Surg. 2007, 23, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Moses, B.; Orchard, J.; Orchard, J. Systematic review: Annual incidence of ACL injury and surgery in various populations. Res. Sports Med. 2012, 20, 157–179. [Google Scholar] [CrossRef]
- Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb asymmetries: The need for an individual approach to data analysis. J. Strength Cond. Res. 2021, 35, 695–701. [Google Scholar] [CrossRef]
- Maly, T.; Zahalka, F.; Mala, L.; Cech, P. The bilateral strength and power asymmetries in untrained boys. Open Med. 2015, 10, 224–232. [Google Scholar] [CrossRef]
- Powers, C.M. The influence of abnormal hip mechanics on knee injury: A biomechanical perspective. J. Orthop. Sports Phys. Ther. 2010, 40, 42–51. [Google Scholar] [CrossRef]
- Ho, K.Y.; Murata, A. Asymmetries in Dynamic Valgus Index After Anterior Cruciate Ligament Reconstruction: A Proof-of-Concept Study. Int. J. Environ. Res. Public Health 2021, 18, 7047. [Google Scholar] [CrossRef]
- García-García, O.; Cuba-Dorado, A.; Álvarez-Yates, T.; Carballo-López, J.; Iglesias-Caamaño, M. Clinical utility of tensiomyography for muscle function analysis in athletes. Open Access J. Sports Med. 2019, 10, 49–69. [Google Scholar] [CrossRef]
- Paravlic, A.H.; Milanović, Z.; Abazović, E.; Vučković, G.; Spudić, D.; Rošker, Z.M.; Pajek, M.; Vodičar, J. The muscle contractile properties in female soccer players: Inter-limb comparison using tensiomyography. J. Musculoskelet. Neuronal Interact. 2022, 22, 179–192. [Google Scholar]
- Zubac, D.; Šimunič, B. Skeletal muscle contraction time and tone decrease after 8 weeks of plyometric training. J. Strength Cond. Res. 2017, 31, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Verkhoshansky, Y.; Siff, M.C. Supertraining, 6th ed.; Verkhoshansky SSTM: Moscow, Russia, 2009. [Google Scholar]
- Gonzalo-Skok, O.; Moreno-Azze, A.; Arjol-Serrano, J.L.; Tous-Fajardo, J.; Bishop, C. A comparison of 3 different unilateral strength training strategies to enhance jumping performance and decrease inter-limb asymmetries in soccer players. Int. J. Sports Phy. Perf. 2019, 14, 1256–1264. [Google Scholar]
- Pardos-Mainer, E.; Casajús, J.A.; Bishop, C.; Gonzalo-Skok, O. Effects of combined strength and power training on physical performance and inter-limb asymmetries in adolescent female soccer players. Int. J. Sports Phy. Perf. 2020, 15, 1147–1155. [Google Scholar]
- Prvulović, N.; Pantelić, S.; Stanković, R.; Bubanj, S. Effects of plyometric programms on biomechanical parameters in track and field, basketball and volleyball: A systematic review. Facta Univ. Ser. Teach. Learn. Teach. Educ. 2022, 6, 103–117. [Google Scholar] [CrossRef]
- Kosova, S.; Beyhan, R.; Kosova, M.K. The effect of 8-week plyometric training on jump height, agility, speed and asymmetry. Pedagog. Phys. Cult. Sports 2022, 26, 13–18. [Google Scholar] [CrossRef]
- Sammoud, S.; Negra, Y.; Bouguezzi, R.; Ramirez-Campillo, R.; Moran, J.; Bishop, C.; Chaabene, H. Effects of plyometric jump training on measures of physical fitness and lower-limb asymmetries in prepubertal male soccer players: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2024, 16, 37. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Andrade, D.C.; Nikolaidis, P.T.; Moran, J.; Clemente, F.M.; Chaabene, H.; Comfort, P. Effects of plyometric jump training on vertical jump height of volleyball players: A systematic review with meta-analysis of randomized-controlled trial. J. Sports Sci. Med. 2020, 19, 489–499. [Google Scholar]
- Frikha, M.; Chaâri, N.; Mezghanni, N.; Souissi, N. Influence of warm-up duration and recovery interval prior to exercise on anaerobic performance. Biol. Sport 2016, 33, 361–366. [Google Scholar] [CrossRef]
- Marfell-Jones, M.; Olds, T.; Stewart, A.; Carter, L. ISAK Accreditation Handbook; International Society for the Advancement of Kinanthropometry (ISAK): Potchefstroom, South Africa, 2006. [Google Scholar]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and agreement of various InBody body composition analyzers as compared to dual-energy X-ray absorptiometry in healthy men and women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef]
- Silva, A.M.; Fields, D.A.; Heymsfield, S.B.; Sardinha, L.B. Body composition and power changes in elite judo athletes. Int. J. Sports Med. 2010, 31, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Santos, J.R.; Ruiz, J.R.; Cohen, D.D.; Gonzalez-Montesinos, J.L.; Castro-Piñero, J. Reliability and validity of tests to assess lower-body muscular power in children. J. Strength Cond. Res. 2015, 29, 2277–2285. [Google Scholar] [CrossRef] [PubMed]
- Holden, S.; Boreham, C.; Doherty, C.; Wang, D.; Delahunt, E. Clinical assessment of countermovement jump landing kinematics in early adolescence: Sex differences and normative values. Clin. Biomech. 2015, 30, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Sorenson, B.; Kernozek, T.W.; Willson, J.D.; Ragan, R.; Hove, J. Two-and three-dimensional relationships between knee and hip kinematic motion analysis: Single-leg drop-jump landings. J. Sport Rehabil. 2015, 24, 363–372. [Google Scholar] [CrossRef]
- Šimunič, B.; Degens, H.; Rittweger, J.; Narici, M.; Mekjavic, I.; Pisot, R. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med. Sci. Sports Exerc. 2011, 43, 1619–1625. [Google Scholar] [CrossRef]
- Dumitru, D.; Amato, A.A.; Zwarts, M.J. (Eds.) Special nerve conduction techniques. In Electrodiagnostic Medicine, 2nd ed.; Hanley & Belfus: Philadelphia, PA, USA, 2001; pp. 225–256. [Google Scholar]
- Zubac, D.; Paravlić, A.; Koren, K.; Felicita, U.; Šimunič, B. Plyometric exercise improves jumping performance and skeletal muscle contractile properties in seniors. J. Musculoskelet. Neuronal Interact. 2019, 19, 38–49. [Google Scholar]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Vickers, A.J.; Altman, D.G. Analysing controlled trials with baseline and follow up measurements. BMJ 2001, 323, 1123–1124. [Google Scholar] [CrossRef]
- Madruga-Parera, M.; Bishop, C.; Fort-Vanmeerhaeghe, A.; Beato, M.; Gonzalo-Skok, O.; Romero-Rodríguez, D. Effects of 8 weeks of isoinertial vs. cable-resistance training on motor skills performance and interlimb asymmetries. J. Strength Cond. Res. 2022, 36, 1200–1208. [Google Scholar] [CrossRef]
- Arabatzi, F.; Kellis, E.; De Villarreal, E.S.S. Vertical jump biomechanics after plyometric, weight lifting, and combined (weight lifting + plyometric) training. J. Strength Cond. Res. 2010, 24, 2440–2448. [Google Scholar] [CrossRef]
- Azreh, R.; Oskouei, A.H.; Shirazi, S.A.E. Effects of Short-term Plyometric Training on Countermovement Vertical Jump Height and Kinematics of Take-Off. Thrita 2020, 9, e108054. [Google Scholar] [CrossRef]
- Herrington, L. The effects of 4 weeks of jump training on landing knee valgus and crossover hop performance in female basketball players. J. Strength Cond. Res. 2010, 24, 3427–3432. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Tihanyi, J.; Komi, P.V.; Fekete, G.; Apor, P. Store and recoil of elastic energy in slow and fast types of human skeletal muscles. Acta Physiol. Scand. 1982, 116, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; García-Pinillos, F.; Nikolaidis, P.T.; Clemente, F.M.; Gentil, P.; García-Hermoso, A. Body composition adaptations to lower-body plyometric training: A systematic review and meta-analysis. Biol. Sport 2022, 39, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Egan-Shuttler, J.D.; Edmonds, R.; Eddy, C.; O’Neill, V.; Ives, S.J. The effect of concurrent plyometric training versus submaximal aerobic cycling on rowing economy, peak power, and performance in male high school rowers. Sports Med. Open 2017, 3, 7. [Google Scholar] [CrossRef]
- Dæhlin, T.E.; Haugen, O.C.; Haugerud, S.; Hollan, I.; Raastad, T.; Rønnestad, B.R. Improvement of ice hockey players’ on-ice sprint with combined plyometric and strength training. Int. J. Sports Physiol. Perform. 2017, 12, 893–900. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Influence of strength on magnitude and mechanisms of adaptation to power training. Med. Sci. Sports Exerc. 2010, 42, 1566–1581. [Google Scholar] [CrossRef]
Characteristics of the Program | Eccentric Plyometric Program, E1 | Concentric Plyometric Program, E2 |
---|---|---|
Duration | 6 weeks | 6 weeks |
Frequency | 2/week | 2/week |
Duration | 45–60 min | 45–60 min |
Intensity | High | High |
Structure | 3-part | 3-part |
BJump | 1–5 s | 1–5 s |
BSets | 60–120 s | 60–120 s |
BExc | 120–240 s | 120–240 s |
RAllJump-DLandSJ | 30–40% to 70–60% | 30–40% to 70–60% |
Number of exercises | 12 (4 warm up) | 12 (4 warm up) |
Type of exercise | HLJ/S3J/HV2JBox (30 cm)/ DJ (30 cm)-2/Sp10–20 m | HLJ/S3J/HV2JBox (30 cm)/ DJ (30 cm)-2/Sp10–20 m |
DiffPr | DL (heights 60–100 cm) | SJ (jump on height boxes 30–60 cm) |
Tests | Variables | G | Pre-Test (M + Sd) | Post-Test (M + Sd) | Diff (%) Pre-Post | ηp2 | |
---|---|---|---|---|---|---|---|
Anthropometric | Age | E1 | 17.0 ± 0.94 | N/A | N/A | N/A | |
E2 | 16.9 ± 1.1 | ||||||
Height (cm) | E1 | 174.9 ± 4.75 | |||||
E2 | 171.9 ± 8.36 | ||||||
Mass (kg) | E1 | 65.5 ± 6.68 | |||||
E2 | 65.8 ± 9.6 | ||||||
Body composition | Lean Body Mass (kg) | E1 | 48.55 ± 4.11 | 47.97 ± 3.99 | 0.58 (1.19) | 0.20 | |
E2 | 47.92 ± 6.33 | 48.20 ± 6.45 | −0.28 (−0.58) | 0.06 | |||
SMM (kg) | E1 | 28.76 ± 2.69 | 28.36 ± 2.57 | 0.4 (1.39) | 0.22 | ||
E2 | 28.29 ± 3.92 | 28.55 ± 3.95 | −0.26 (−0.92) | 0.12 | |||
FFM (kg) | E1 | 51.63 ± 4.43 | 51.03 ± 4.29 | 0.6 (1.16) | 0.19 | ||
E2 | 50.99 ± 6.76 | 51.31 ± 6.92 | −0.32 (−0.63) | 0.07 | |||
Left Leg Lean Mass (%) | E1 | 115.98 ± 4.50 | 114.10 ± 4.26 | 1.88 (1.62) * | 0.52 | ||
E2 | 113.05 ± 7.18 | 111.67 ± 7.91 | 1.38 (1.22) | 0.13 | |||
Right Leg Lean Mass (%) | E1 | 116.93 ± 4.71 | 114.19 ± 4.37 | 2.74 (2.34) * | 0.54 | ||
E2 | 113.38 ± 7.76 | 112.88 ± 8.32 | 0.5 (0.44) | 0.01 | |||
BMI | E1 | 21.4 ± 2.38 | 21.8 ± 2.33 | −0.4 (−1.87) * | 0.60 | ||
E2 | 22.2 ± 2.35 | 22.4 ± 2.25 | −0.2 (−0.90) | 0.20 | |||
InBodyScore | E1 | 77.8 ± 5.83 | 77.7 ± 3.47 | 0.1 (0.13) | 0.00 | ||
E2 | 79.2 ± 4.16 | 79.6 ± 4.84 | −0.4 (−0.51) | 0.03 | |||
CMJ | Sagittal | Hip (°) | E1 | 39.92 ± 10.46 | 36.70 ± 9.46 | −3.22 (8.06) | 0.12 |
E2 | 46.01 ± 11.74 | 45.20 ± 8.43 # | −0.81 (1.76) | 0.01 | |||
Knee (°) | E1 | 82.85 ± 9.82 | 83.56 ± 7.97 | 0.71 (0.86) | 0.01 | ||
E2 | 86.67 ± 3.51 | 88.64 ± 6.70 | 1.97 (2.27) | 0.10 | |||
Frontal | Left Knee (°) | E1 | 182.30 ± 22.01 | 186.09 ± 15.55 | 3.79 (2.08) | 0.05 | |
E2 | 179.83 ± 6.74 | 182.82 ± 13.83 | 2.99 (1.66) | 0.06 | |||
Hip (°) | E1 | 170.23 ± 20.41 | 173.19 ± 11.23 | 2.96 (1.74) | 0.04 | ||
E2 | 177.14 ± 17.49 | 175.40 ± 15.93 | −1.74 (0.98) | 0.02 |
Tests | Variables | G | Pre-Test (M + Sd) | Post-Test (M + Sd) | Diff (%) Pre-Post | ηp2 |
---|---|---|---|---|---|---|
Lateral Symmetry | m.Vastus medialis (%) | E1 | 88.60 ± 5.36 | 88.70 ± 5.80 | 0.1 (0.11) | 0.00 |
E2 | 85.40 ± 12.47 | 90.00 ± 4.19 | 4.6 (5.38) | 0.16 | ||
m.Vastus lateralis (%) | E1 | 78.70 ± 11.27 | 88.60 ± 6.00 | 9.9 (12.57) * | 0.50 | |
E2 | 84.20 ± 6.96 | 89.80 ± 5.87 | 5.7 (6.77) | 0.22 | ||
m.Biceps femoris (%) | E1 | 68.10 ± 18.18 | 86.10 ± 10.69 | 18.0 (26.43) * | 0.39 | |
E2 | 61.50 ± 16.53 | 84.00 ± 11.18 | 22.5 (36.58) ** | 0.58 | ||
m.Semitendinosus (%) | E1 | 89.80 ± 6.03 | 86.00 ± 10.10 | −3.8 (4.23) | 0.15 | |
E2 | 80.90 ± 15.09 | 83.60 ± 8.17 | 2.7 (3.34) | 0.02 | ||
m.Gastrocnemius medialis (%) | E1 | 81.00 ± 9.24 | 91.60 ± 4.17 | 10.6 (13.08) * | 0.52 | |
E2 | 81.00 ± 7.83 | 84.80 ± 8.84 # | 3.8 (4.69) | 0.24 | ||
m.Gastrocnemius lateralis (%) | E1 | 77.90 ± 15.82 | 84.40 ± 10.15 | 6.5 (8.34) | 0.09 | |
E2 | 76.50 ± 13.43 | 83.50 ± 10.19 | 7.0 (9.15) | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prvulović, N.; Žuža Praštalo, M.; Lilić, A.; Pantelić, S.; Katanić, B.; Čoh, M.; Vučić, V. TMG Symmetry and Kinematic Analysis of the Impact of Different Plyometric Programs on Female Athletes’ Lower-Body Muscles. Symmetry 2024, 16, 1393. https://doi.org/10.3390/sym16101393
Prvulović N, Žuža Praštalo M, Lilić A, Pantelić S, Katanić B, Čoh M, Vučić V. TMG Symmetry and Kinematic Analysis of the Impact of Different Plyometric Programs on Female Athletes’ Lower-Body Muscles. Symmetry. 2024; 16(10):1393. https://doi.org/10.3390/sym16101393
Chicago/Turabian StylePrvulović, Nikola, Milena Žuža Praštalo, Ana Lilić, Saša Pantelić, Borko Katanić, Milan Čoh, and Vesna Vučić. 2024. "TMG Symmetry and Kinematic Analysis of the Impact of Different Plyometric Programs on Female Athletes’ Lower-Body Muscles" Symmetry 16, no. 10: 1393. https://doi.org/10.3390/sym16101393
APA StylePrvulović, N., Žuža Praštalo, M., Lilić, A., Pantelić, S., Katanić, B., Čoh, M., & Vučić, V. (2024). TMG Symmetry and Kinematic Analysis of the Impact of Different Plyometric Programs on Female Athletes’ Lower-Body Muscles. Symmetry, 16(10), 1393. https://doi.org/10.3390/sym16101393