Applications of a q-Integral Operator to a Certain Class of Analytic Functions Associated with a Symmetric Domain
Abstract
:1. Introduction
2. A Set of Lemmas
3. Main Results
3.1. Coefficient Estimates and the Fekete–Szegö Problem
3.2. Partial Sums Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential subordinations theory and applications. In Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 2000; p. 225. [Google Scholar]
- Jackson, F.H. On q-functions and certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order α. Hokkaido Math. 2017, 46, 15–27. [Google Scholar] [CrossRef]
- Ashish, V.; Sarasvati, Y. Recursion formulas for Srivastava’s general triple q-hypergeometric series. Afr. Mat. 2020, 31, 869–885. [Google Scholar]
- Amini, E.; Fardi, M.; Al-Omari, S.; Saadeh, R. Certain differential subordination results for univalent functions associated with q-Salagean operators. Aims Math. 2023, 8, 15892–15906. [Google Scholar] [CrossRef]
- Noor, K.I.; Lupas, A.A.; Shah, S.A.; Sibih, A.M.; A-Khalek, S. Study of generalized q-close-to-convex functions related to parabolic domain. Funct. Spaces 2023, 2023, 2608060. [Google Scholar] [CrossRef]
- Shaikh, S.B.; Abubaker, A.A.; Matarneh, K.; Khan, M.F. Some new applications of the q-analogues of differential and integral operators for new subclasses of q-starlike and q-convex functions. Fractal Fract. 2023, 7, 411. [Google Scholar] [CrossRef]
- Breaz, D.; Alahmari, A.A.; Cotîrlâ, L.I.; Shah, S.A. On generalizations of the close-to-convex functions associated with q-Srivastava-Attiya operator. Mathematics 2023, 11, 2022. [Google Scholar] [CrossRef]
- Cotîrlâ, L.-I.; Murugusundaramoorthy, G. Starlike functions based on Ruscheweyh q-differential operator defined in Janowski Domain. Fractal Fract. 2023, 7, 148. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Res. Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Sokól, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mater. 1996, 19, 101–105. [Google Scholar]
- Saliu, A.; Oladejo, S.O. On lemniscate of Bernoulli of q-Janowski type. J. Nig. Soc. Phy. Sci. 2022, 4, 961. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. New subclass of analytic functions defined by q-differential Operator with respect to k-symmetric points. Int. Math Comp. Sci. 2019, 14, 761–773. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 2004; p. 96. [Google Scholar]
- Yamanoa, T. Some properties of q-logarithm and q-exponential functions in tsallis statistics. Phys. A 2002, 305, 486–496. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B. Some geometric properties of a family of analytic functions involving a generalized q-operator. Symmetry 2020, 12, 291. [Google Scholar] [CrossRef]
- Noor, K.I. On new classes of integral operators. J. Nat. Geom. 2013, 65, 454–465. [Google Scholar]
- Ma, W.; Minda, D.A. Unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Mathe. Ineq. 2016, 10, 135–145. [Google Scholar] [CrossRef]
- Ahmad, A.; Gong, J.; Rasheed, A.; Hussain, S.; Ali, A.; Cheikh, Z. Sharp results for a new class of analytic functions associated with the q-differential operator and the symmetric balloon-shaped domain. Symmetry 2024, 16, 1134. [Google Scholar] [CrossRef]
- Taj, Y.; Zainab, S.; Xin, Q.; Ferdous, M.O.; Tawfiq; Raza, M.; Malik, S.N. Certain coefficient problems for q-starlike functions associated with q-analogue of sine function. Symmetry 2022, 14, 2200. [Google Scholar] [CrossRef]
- Jabeen, M.; Malik, S.N.; Mahmood, S.; Riaz, S.Ṁ.J.; Ali, M.S. On q-convex functions defined by the q-Ruscheweyh derivative operator in conic regions. J. Math. 2022, 2022, 2681798. [Google Scholar] [CrossRef]
- Mahmood, M.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. Funct. Spaces 2018, 2018, 8492072. [Google Scholar] [CrossRef]
- Dziok, J. A general solution of the Fekete–Szegö problem, Bound. Value Probl. 2013, 2013, 98. [Google Scholar] [CrossRef]
- Ravichandran, V.; Darus, M.; Khan, M.H.; Subramanian, K.G. Fekete-Szegö inequality for certain class of analytic functions. Aust. J. Math. Anal. Appl. 2004, 1, 1–7. [Google Scholar]
- Ravichandran, V.; Gangadharan, A.; Darus, M. Fekete-Szegö inequality for certain class of Bazilevic functions. Far East J. Math. Sci. 2004, 15, 171–180. [Google Scholar]
- Shanmugam, T.N.; Sivassubramanian, S.; Darus, M. Fekete-Szegö inequality for certain class of Bazilevic functions. Int. Math. 2006, 34, 283–290. [Google Scholar]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.; Louati, H.; Rasheed, A.; Ali, A.; Hussain, S.; Hilali, S.O.; Al-Rezami, A.Y. Applications of a q-Integral Operator to a Certain Class of Analytic Functions Associated with a Symmetric Domain. Symmetry 2024, 16, 1443. https://doi.org/10.3390/sym16111443
Ahmad A, Louati H, Rasheed A, Ali A, Hussain S, Hilali SO, Al-Rezami AY. Applications of a q-Integral Operator to a Certain Class of Analytic Functions Associated with a Symmetric Domain. Symmetry. 2024; 16(11):1443. https://doi.org/10.3390/sym16111443
Chicago/Turabian StyleAhmad, Adeel, Hanen Louati, Akhter Rasheed, Asad Ali, Saqib Hussain, Shreefa O. Hilali, and Afrah Y. Al-Rezami. 2024. "Applications of a q-Integral Operator to a Certain Class of Analytic Functions Associated with a Symmetric Domain" Symmetry 16, no. 11: 1443. https://doi.org/10.3390/sym16111443
APA StyleAhmad, A., Louati, H., Rasheed, A., Ali, A., Hussain, S., Hilali, S. O., & Al-Rezami, A. Y. (2024). Applications of a q-Integral Operator to a Certain Class of Analytic Functions Associated with a Symmetric Domain. Symmetry, 16(11), 1443. https://doi.org/10.3390/sym16111443