Enhanced Oscillation Criteria for Non-Canonical Second-Order Advanced Dynamic Equations on Time Scales
Abstract
:1. Introduction
2. Preliminary Results
- (i)
- , and
- (ii)
- , and
3. Oscillation Results
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Trench, W. Canonical forms and principal systems for general disconjugate equations. Trans. Am. Math. Soc. 1974, 189, 319–327. [Google Scholar] [CrossRef]
- Chatzarakis, G.; Indrajith, N.; Panetsos, S.; Thandapani, E. Oscillations of second-order noncanonical advanced difference equations via canonical transformation. Carpathian J. Math. 2022, 38, 383–390. [Google Scholar] [CrossRef]
- Chatzarakis, G.; Grace, S.; Jadlovská, I. Oscillation theorems for certain second-order nonlinear retarded difference equations. Math. Slovaca 2021, 71, 871–880. [Google Scholar] [CrossRef]
- Dzurina, J. Oscillation of the second order advanced differential equations. Electron. J. Qual. Theory Differ. Equ. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Baculíková, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Hassan, T.; Kong, Q.; El-Matary, B. Oscillation criteria for advanced half-linear differential equations of second order. Mathematics 2023, 11, 1385. [Google Scholar] [CrossRef]
- Grace, S. New oscillation criteria of nonlinear second order delay difference equations. Mediterr. J. Math. 2022, 19, 166. [Google Scholar] [CrossRef]
- Karpuz, B. Hille–nehari theorems for dynamic equations with a time scale independent critical constant. Appl. Math. Comput. 2019, 346, 336–351. [Google Scholar] [CrossRef]
- Grace, S.; Bohner, M.; Agarwal, R. On the oscillation of second-order half-linear dynamic equations. J. Differ. Equ. Appl. 2009, 15, 451–460. [Google Scholar] [CrossRef]
- Graef, J.; Grace, S.; Tunc, E. Oscillation of second-order nonlinear noncanonical dynamic equations with deviating arguments. Acta Math. Univ. Comen. 2022, 91, 113–120. [Google Scholar]
- Hassan, T. Kamenev-type oscillation criteria for second-order nonlinear dynamic equations on time scales. Appl. Math. Comput. 2011, 217, 5285–5297. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T. Some oscillation results for second-order nonlinear delay dynamic equations. Appl. Math. Lett. 2013, 26, 1114–1119. [Google Scholar] [CrossRef]
- Baculíková, B. Oscillatory behavior of the second order noncanonical differential equations. Electron. J. Qual. Theory Differ. Equ. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Chatzarakis, G.; Džurina, J.; Jadlovská, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Erbe, L.; Kong, Q.; Zhang, B. Oscillation Theory for Functional Differential Equations; Routledge: London, UK, 2017. [Google Scholar]
- Kamenev, I. An integral criterion for oscillation of linear differential equations of second order. Math. Notes Acad. Sci. USSR 1978, 23, 136–138. [Google Scholar] [CrossRef]
- Li, H. Oscillation criteria for second order linear differential equations. J. Math. Anal. Appl. 1995, 194, 217–234. [Google Scholar] [CrossRef]
- Rogovchenko, Y. Oscillation criteria for certain nonlinear differential equations. J. Math. Anal. Appl. 1999, 229, 399–416. [Google Scholar] [CrossRef]
- Thandapani, E.; Ravi, K.; Graef, J. Oscillation and comparison theorems for half-linear second-order difference equations. Comput. Math. Appl. 2001, 42, 953–960. [Google Scholar] [CrossRef]
- Chandrasekaran, E.; Chatzarakis, G.; Palani, G.; Thandapani, E. Oscillation criteria for advanced difference equations of second order. Appl. Math. Comput. 2020, 372, 124963. [Google Scholar] [CrossRef]
- Indrajith, N.; Graef, J.; Thandapani, E. Kneser-type oscillation criteria for second-order half-linear advanced difference equations. Opusc. Math. 2022, 42, 55–64. [Google Scholar] [CrossRef]
- Hassan, T.; Elabbasy, E.; Iqbal, N.; Ali, A.; Rashedi, K.; Abdel Menaem, A. Oscillation criteria enhanced for advanced half-linear dynamic equations. J. Math. 2024, 2024, 1302630. [Google Scholar] [CrossRef]
- Hassan, T.; El-Nabulsi, R.; Iqbal, N.; Abdel Menaem, A. New criteria for oscillation of advanced noncanonical nonlinear dynamic equations. Mathematics 2024, 12, 824. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Han, Z. New oscillation criterion for emden–fowler type nonlinear neutral delay differential equations. J. Appl. Math. Comput. 2019, 60, 191–200. [Google Scholar] [CrossRef]
- Hassan, A.; Ramos, H.; Moaaz, O. Second-order dynamic equations with noncanonical operator: Oscillatory behavior. Fractal Fract. 2023, 7, 134. [Google Scholar] [CrossRef]
0.5 | |
0.49 | |
0.48 | |
0.47 | |
0.46 | |
0.45 | |
0.44 | |
0.43 | |
0.425 | |
0.421 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.M.; Moaaz, O.; Askar, S.S.; Alshamrani, A.M.; Affan, S.E. Enhanced Oscillation Criteria for Non-Canonical Second-Order Advanced Dynamic Equations on Time Scales. Symmetry 2024, 16, 1457. https://doi.org/10.3390/sym16111457
Hassan AM, Moaaz O, Askar SS, Alshamrani AM, Affan SE. Enhanced Oscillation Criteria for Non-Canonical Second-Order Advanced Dynamic Equations on Time Scales. Symmetry. 2024; 16(11):1457. https://doi.org/10.3390/sym16111457
Chicago/Turabian StyleHassan, Ahmed M., Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, and Samy E. Affan. 2024. "Enhanced Oscillation Criteria for Non-Canonical Second-Order Advanced Dynamic Equations on Time Scales" Symmetry 16, no. 11: 1457. https://doi.org/10.3390/sym16111457
APA StyleHassan, A. M., Moaaz, O., Askar, S. S., Alshamrani, A. M., & Affan, S. E. (2024). Enhanced Oscillation Criteria for Non-Canonical Second-Order Advanced Dynamic Equations on Time Scales. Symmetry, 16(11), 1457. https://doi.org/10.3390/sym16111457