Some Exact Green Function Solutions for Non-Linear Classical Field Theories
Abstract
:1. Introduction
2. Preliminaries
3. Solution for the Scalar Field
3.1. Homogeneous Equation
3.2. Functional Taylor Expansion
3.3. Green Function
3.4. Higher Order Green Functions
4. Solution for the Yang–Mills Field
5. Partition Function of the Scalar Field
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Polchinski, J. Renormalization and Effective Lagrangians. Nucl. Phys. B 1984, 231, 269–295. [Google Scholar] [CrossRef]
- Wetterich, C. Exact evolution equation for the effective potential. Phys. Lett. B 1993, 301, 90–94. [Google Scholar] [CrossRef]
- Wipf, A. Statistical Approach to Quantum Field Theory: An Introduction. Lect. Notes Phys. 2021, 992, 1–554. [Google Scholar]
- Frasca, M. A theorem on the Higgs sector of the Standard Model. Eur. Phys. J. Plus 2016, 131, 199. [Google Scholar] [CrossRef]
- Frasca, M. Quantum Yang–Mills field theory. Eur. Phys. J. Plus 2017, 132, 38, Erratum in Eur. Phys. J. Plus 2017, 132, 242. [Google Scholar] [CrossRef]
- Bateman, H. Higher Transcendental Functions [Volumes I–III]; McGraw-Hill Book Company: New York, NY, USA, 1953. [Google Scholar]
- Frasca, M. Exact solutions of classical scalar field equations. J. Nonlin. Math. Phys. 2011, 18, 291–297. [Google Scholar] [CrossRef]
- Frasca, M. Scalar field theory in the strong self-interaction limit. Eur. Phys. J. C 2014, 74, 2929. [Google Scholar] [CrossRef]
- Bogolubsky, I.L.; Ilgenfritz, E.M.; Müller-Preussker, M.; Sternbeck, A. The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes. arXiv 2007, arXiv:0710.1968. [Google Scholar]
- Cucchieri, A.; Mendes, T. What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices. arXiv 2007, arXiv:0710.0412. [Google Scholar]
- Oliveira, O.; Silva, P.J.; Ilgenfritz, E.M.; Sternbeck, A. The Gluon propagator from large asymmetric lattices. arXiv 2007, arXiv:0710.1424. [Google Scholar]
- Lucini, B.; Teper, M.; Wenger, U. Glueballs and k-strings in SU(N) gauge theories: Calculations with improved operators. JHEP 2004, 06, 012. [Google Scholar] [CrossRef]
- Chen, Y.; Alexandru, A.; Dong, S.J.; Draper, T.; Horváth, I.; Lee, F.X.; Liu, K.F.; Mathur, N.; Morningstar, C.; Peardon, M.; et al. Glueball spectrum and matrix elements on anisotropic lattices. Phys. Rev. D 2006, 73, 014516. [Google Scholar] [CrossRef]
- Cornwall, J.M. Dynamical Mass Generation in Continuum QCD. Phys. Rev. D 1982, 26, 1453–1478. [Google Scholar] [CrossRef]
- Cornwall, J.M.; Papavassiliou, J.; Binosi, D. The Pinch Technique and Its Applications to Non-Abelian Gauge Theories; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Dudal, D.; Gracey, J.A.; Sorella, S.P.; Vandersickel, N.; Verschelde, H. A Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results. Phys. Rev. D 2008, 78, 065047. [Google Scholar] [CrossRef]
- Frasca, M. Infrared Gluon and Ghost Propagators. Phys. Lett. B 2008, 670, 73–77. [Google Scholar] [CrossRef]
- Frasca, M. Mapping a Massless Scalar Field Theory on a Yang–Mills Theory: Classical Case. Mod. Phys. Lett. A 2009, 24, 2425–2432. [Google Scholar] [CrossRef]
- Frasca, M. Confinement in a three-dimensional Yang–Mills theory. Eur. Phys. J. C 2017, 77, 255. [Google Scholar] [CrossRef]
- Frasca, M. Spectrum of Yang–Mills theory in 3 and 4 dimensions. Nucl. Part. Phys. Proc. 2018, 294–296, 124–128. [Google Scholar] [CrossRef]
- Chaichian, M.; Frasca, M. Condition for confinement in non-Abelian gauge theories. Phys. Lett. B 2018, 781, 33–39. [Google Scholar] [CrossRef]
- Eichten, E.; Feinberg, F. Dynamical Symmetry Breaking of Nonabelian Gauge Symmetries. Phys. Rev. D 1974, 10, 3254–3279. [Google Scholar] [CrossRef]
- Baker, M.; Lee, C.K. Overlapping Divergence Free Skeleton Expansion in Nonabelian Gauge Theories. Phys. Rev. D 1977, 15, 2201–2234, Erratum in Phys. Rev. D 1978, 17, 2182. [Google Scholar] [CrossRef]
- Roberts, C.D.; Williams, A.G. Dyson-Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 1994, 33, 477–575. [Google Scholar] [CrossRef]
- Bender, C.M.; Milton, K.A.; Savage, V.M. Solution of Schwinger-Dyson equations for PT symmetric quantum field theory. Phys. Rev. D 2000, 62, 085001. [Google Scholar] [CrossRef]
- Wolkow, D.M. Über eine Klasse von Lösungen der Diracschen Gleichung. Z. Phys. 1935, 94, 250–260. [Google Scholar] [CrossRef]
- Fubini, S. A New Approach to Conformal Invariant Field Theories. Nuovo Cim. A 1976, 34, 521–554. [Google Scholar] [CrossRef]
- Lipatov, L.N. Divergence of the Perturbation Theory Series and the Quasiclassical Theory. Sov. Phys. JETP 1977, 45, 216–223. [Google Scholar]
- Frasca, M.; Ghoshal, A. Yukawa theory in non-perturbative regimes: Towards confinement, exact β-function and conformal phase. Eur. Phys. J. C 2024, 84, 1101. [Google Scholar] [CrossRef]
- Frasca, M. Chiral symmetry in the low-energy limit of QCD at finite temperature. Phys. Rev. C 2011, 84, 055208. [Google Scholar] [CrossRef]
- Gußmann, A. Scattering of massless scalar waves by magnetically charged black holes in Einstein–Yang–Mills–Higgs theory. Class. Quant. Grav. 2017, 34, 065007. [Google Scholar] [CrossRef]
- Guo, Y.; Miao, Y.G. Scalar quasinormal modes of black holes in Einstein-Yang–Mills gravity. Phys. Rev. D 2020, 102, 064049. [Google Scholar] [CrossRef]
- Al-Badawi, A.; Kanzi, S.; Sakallı, İ. Greybody radiation of scalar and Dirac perturbations of NUT black holes. Eur. Phys. J. Plus 2022, 137, 94. [Google Scholar] [CrossRef]
- Frasca, M. Strong coupling expansion for general relativity. Int. J. Mod. Phys. D 2006, 15, 1373–1386. [Google Scholar] [CrossRef]
- Frasca, M.; Liberati, R.M.; Rossi, M. Warping effects in strongly perturbed metrics. Physics 2020, 2, 665–678. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frasca, M.; Groote, S. Some Exact Green Function Solutions for Non-Linear Classical Field Theories. Symmetry 2024, 16, 1504. https://doi.org/10.3390/sym16111504
Frasca M, Groote S. Some Exact Green Function Solutions for Non-Linear Classical Field Theories. Symmetry. 2024; 16(11):1504. https://doi.org/10.3390/sym16111504
Chicago/Turabian StyleFrasca, Marco, and Stefan Groote. 2024. "Some Exact Green Function Solutions for Non-Linear Classical Field Theories" Symmetry 16, no. 11: 1504. https://doi.org/10.3390/sym16111504
APA StyleFrasca, M., & Groote, S. (2024). Some Exact Green Function Solutions for Non-Linear Classical Field Theories. Symmetry, 16(11), 1504. https://doi.org/10.3390/sym16111504