Supersymmetric Quesne-Dunkl Quantum Mechanics on Radial Lines
Abstract
:1. Introduction
2. The Generalized Hermite Polynomials on the Radial Lines
3. Supersymmetric Quantum Mechanics on Radial Rays
4. The Case:
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wigner, E.P. Do the equations of motion determine the quantum mechanical commutation relations? Phys. Rev. 1950, 77, 711. [Google Scholar] [CrossRef]
- Yang, L. A note on the quantum rule of the harmonic oscillator. Phys. Rev. 1951, 84, 788. [Google Scholar] [CrossRef]
- Dunkl, C.F. Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 1989, 311, 167–183. [Google Scholar] [CrossRef]
- Dunkl, C.F.; Xu, Y. Orthogonal Polynomials of Several Variables; No. 155; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Plyushchay, M.S. Deformed Heisenberg algebra, fractional spin fields, and supersymmetry without fermions. Ann. Phys. (N. Y.) 1996, 245, 339–360. [Google Scholar] [CrossRef]
- Quesne, C.; Vansteenkiste, N. Cλ-extended harmonic oscillator and (para)supersymmetric quantum mechanics. Phys. Lett. A 1998, 240, 21–28. [Google Scholar] [CrossRef]
- Genest, V.X.; Ismail, M.E.H.; Vinet, L.; Zhedanov, A. The Dunkl oscillator in the plane: I. Superintegrability, separated wavefunctions and overlap coefficients. J. Phys. A Math. Theor. 2013, 46, 145201. [Google Scholar] [CrossRef]
- Bouzeffour, F.; Jedidi, W. Cλ-Extended Oscillator Algebra and d-Orthogonal Polynomials. Int. J. Theor. Phys. 2021, 60, 756–770. [Google Scholar] [CrossRef]
- Milovanovic, G.V. Generalized Hermite polynomials on the radial rays in the complex plane. In Theory of Functions and Applications; Nersessian, H.B., Ed.; Louys Publishing House: Yerevan, Armenia, 1995; pp. 125–129. [Google Scholar]
- Milovanovic, G.V. A class of orthogonal polynomials on the radial rays in the complex plane. J. Math. Anal. Appl. 1995, 206, 121–139. [Google Scholar] [CrossRef]
- Khare, A. Supersymmetry and fractional statistics in two-dimensional field theory. J. Phys. A 1992, 25, L749. [Google Scholar] [CrossRef]
- Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys. B 1981, 188, 513–554. [Google Scholar] [CrossRef]
- Gendenshtein, L.E. Supersymmetry in the problem of the harmonic oscillator. JETP Lett. 1983, 38, 356. [Google Scholar]
- Plyushchay, M.S. Supersymmetry without fermions. arXiv 1994, arXiv:hep-th/9404081. [Google Scholar]
- Post, S.; Vinet, L.; Zhedanov, A. Supersymmetric quantum mechanics with reflections. J. Phys. A Math. Theor. 2011, 44, 435301. [Google Scholar] [CrossRef]
- Bouzeffour, F. The Extended Dunkl Oscillator and the Generalized Hermite Polynomials on the Radial Lines. J. Nonlinear Math. Phys. 2024, 31, 56. [Google Scholar] [CrossRef]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Courier Corporation: North Chelmsford, MA, USA, 2011. [Google Scholar]
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzeffour, F. Supersymmetric Quesne-Dunkl Quantum Mechanics on Radial Lines. Symmetry 2024, 16, 1508. https://doi.org/10.3390/sym16111508
Bouzeffour F. Supersymmetric Quesne-Dunkl Quantum Mechanics on Radial Lines. Symmetry. 2024; 16(11):1508. https://doi.org/10.3390/sym16111508
Chicago/Turabian StyleBouzeffour, Fethi. 2024. "Supersymmetric Quesne-Dunkl Quantum Mechanics on Radial Lines" Symmetry 16, no. 11: 1508. https://doi.org/10.3390/sym16111508
APA StyleBouzeffour, F. (2024). Supersymmetric Quesne-Dunkl Quantum Mechanics on Radial Lines. Symmetry, 16(11), 1508. https://doi.org/10.3390/sym16111508