Regular Dodecahedron-Based Network Structures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Torquato, S.; Jiao, Y. Dense packings of the Platonic and Archimedean solids. Nature 2009, 460, 876–879. [Google Scholar] [CrossRef] [PubMed]
- Torquato, S.; Jiao, Y. Dense packings of polyhedra: Platonic and Archimedean solids. Phys. Rev. E 2009, 80, 041104. [Google Scholar] [CrossRef] [PubMed]
- Viana, V. From Solid to Plane Tessellations, and Back. Nexus Netw. J. 2018, 20, 741–768. [Google Scholar] [CrossRef]
- Gabbrielli, R.; Jiao, Y.; Torquato, S. Families of tessellations of space by elementary polyhedra via retessellations of face-centered-cubic and related tilings. Phys. Rev. E 2012, 86, 041141. [Google Scholar] [CrossRef]
- Damasceno, P.F.; Engel, M.; Glotzer, S.C. Predictive Self-Assembly of Polyhedra into Complex Structures. Science 2012, 337, 453–457. [Google Scholar] [CrossRef]
- Manoharan, V.N. Colloidal matter: Packing, geometry, and entropy. Science 2015, 349, 1253751. [Google Scholar] [CrossRef]
- Boles, M.A.; Engel, M.; Talapin, D.V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem. Rev. 2016, 116, 11220–11289. [Google Scholar] [CrossRef]
- Nagaoka, Y.; Tan, R.; Li, R.; Zhu, H.; Eggert, D.; Wu, Y.A.; Liu, Y.; Wang, Z.; Chen, O. Superstructures generated from truncated tetrahedral quantum dots. Nature 2018, 561, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mbah, C.F.; Przybilla, T.; Zubiri, B.A.; Spiecker, E.; Engel, M.; Vogel, N. Magic number colloidal clusters as minimum free energy structures. Nat. Commun. 2018, 9, 5259. [Google Scholar] [CrossRef]
- Avci, C.; Imaz, I.; Carné-Sánchez, A.; Pariente, J.A.; Tasios, N.; Pérez-Carvajal, J.; Alonso, M.I.; Blanco, A.; Dijkstra, M.; López, C.; et al. Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nat. Chem. 2018, 10, 78–84. [Google Scholar] [CrossRef]
- Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P.L.; Yang, P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2012, 11, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Newman, R.S.; Engel, M.; Zhao, M.; Bian, F.; Glotzer, S.C.; Tang, Z. Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nat. Commun. 2017, 8, 14038. [Google Scholar] [CrossRef]
- Friedrichs, O.D.; O’Keeffe, M.; Yaghi, O.M. Three-periodic nets and tilings: Regular and quasiregular nets. Acta Crystallogr. Sect. A 2003, 59, 22–27. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, M.; Peskov, M.A.; Ramsden, S.J.; Yaghi, O.M. The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets. Acc. Chem. Res. 2008, 41, 1782–1789. [Google Scholar] [CrossRef]
- Estrin, Y.; Dyskin, A.V.; Pasternak, E. Topological interlocking as a material design concept. Mater. Sci. Eng. C 2011, 31, 1189–1194. [Google Scholar] [CrossRef]
- Xu, W.; Lin, X.; Xie, Y.M. A novel non-planar interlocking element for tubular structures. Tunn. Undergr. Space Technol. 2020, 103, 103503. [Google Scholar] [CrossRef]
- Djumas, L.; Simon, G.P.; Estrin, Y.; Molotnikov, A. Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry. Sci. Rep. 2017, 7, 11844. [Google Scholar] [CrossRef] [PubMed]
- Akleman, E.; Krishnamurthy, V.R.; Fu, C.-A.; Subramanian, S.G.; Ebert, M.; Eng, M.; Starrett, C.; Panchal, H. Generalized abeille tiles: Topologically interlocked space-filling shapes generated based on fabric symmetries. Comput. Graph. 2020, 89, 156–166. [Google Scholar] [CrossRef]
- Djumas, L.; Molotnikov, A.; Simon, G.P.; Estrin, Y. Enhanced Mechanical Performance of Bio-Inspired Hybrid Structures Utilising Topological Interlocking Geometry. Sci. Rep. 2016, 6, 26706. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Prog. Mater. Sci. 2018, 94, 114–173. [Google Scholar] [CrossRef]
- Shaikeea, A.J.D.; Cui, H.; O’Masta, M.; Zheng, X.R.; Deshpande, V.S. The toughness of mechanical metamaterials. Nat. Mater. 2022, 21, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Meza, L.R.; Schaedler, T.A.; Schwaiger, R.; Zheng, X.; Valdevit, L. Nanolattices: An Emerging Class of Mechanical Metamaterials. Adv. Mater. 2017, 29, 1701850. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.J.; Oh, M.J.; Yoo, P.J. Structurally Controlled Cellular Architectures for High-Performance Ultra-Lightweight Materials. Adv. Mater. 2019, 31, 1803670. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Mukhopadhyay, T. Programmable multi-physical mechanics of mechanical metamaterials. Mater. Sci. Eng. R Rep. 2023, 155, 100745. [Google Scholar] [CrossRef]
- Berger, J.B.; Wadley, H.N.G.; McMeeking, R.M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 2017, 543, 533–537. [Google Scholar] [CrossRef]
- Bauer, J.; Kraus, J.A.; Crook, C.; Rimoli, J.J.; Valdevit, L. Tensegrity Metamaterials: Toward Failure-Resistant Engineering Systems through Delocalized Deformation. Adv. Mater. 2021, 33, 2005647. [Google Scholar] [CrossRef]
- Andrew, J.J.; Verma, P.; Kumar, S. Impact behavior of nanoengineered, 3D printed plate-lattices. Mater. Des. 2021, 202, 109516. [Google Scholar] [CrossRef]
- Marson, R.L.; Teich, E.G.; Dshemuchadse, J.; Glotzer, S.C.; Larson, R.G. Computational self-assembly of colloidal crystals from Platonic polyhedral sphere clusters. Soft Matter 2019, 15, 6288–6299. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, J.; Ding, Y.; Zhao, Y.; Li, J.; Hu, B.; Xia, C. Packing and void structures of octahedral, dodecahedral and icosahedral granular particles. Granul. Matter 2021, 23, 88. [Google Scholar] [CrossRef]
- Teich, E.G.; van Anders, G.; Klotsa, D.; Dshemuchadse, J.; Glotzer, S.C. Clusters of polyhedra in spherical confinement. Proc. Natl. Acad. Sci. USA 2016, 113, E669–E678. [Google Scholar] [CrossRef]
- Kuo, K.H. Mackay, Anti-Mackay, Double-Mackay, Pseudo-Mackay, and Related Icosahedral Shell Clusters, in Science of Crystal Structures: Highlights in Crystallography; Hargittai, I., Hargittai, B., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 43–52. [Google Scholar]
- Nagaoka, Y.; Schneider, J.; Zhu, H.; Chen, O. Quasicrystalline materials from non-atom building blocks. Matter 2023, 6, 30–58. [Google Scholar] [CrossRef]
- Engel, M.; Damasceno, P.F.; Phillips, C.L.; Glotzer, S.C. Computational self-assembly of a one-component icosahedral quasicrystal. Nat. Mater. 2015, 14, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.P.; Niikura, A.; Inoue, A.; Masumoto, T.; Nishida, Y.; Tsuda, K.; Tanaka, M. Highly ordered structure of icosahedral quasicrystals in Zn-Mg-RE (RE ≡ rare earth metals) systems. Philos. Mag. Lett. 1994, 70, 169–175. [Google Scholar] [CrossRef]
- Man, W.; Megens, M.; Steinhardt, P.J.; Chaikin, P.M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 2005, 436, 993–996. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.-Y.; Kwon, H.; Hur, K. Intrinsic photonic wave localization in a three-dimensional icosahedral quasicrystal. Nat. Phys. 2017, 13, 363–368. [Google Scholar] [CrossRef]
- Paquette, L.A.; Weber, J.C.; Kobayashi, T.; Miyahara, Y. Dodecahedrane. Improved synthetic access to, and monofunctionalization of, the spherical hydrocarbon. Spectral properties of the derivatives. J. Am. Chem. Soc. 1988, 110, 8591–8599. [Google Scholar] [CrossRef]
- Gravel, S.; Elser, V.; Kallus, Y. Upper Bound on the Packing Density of Regular Tetrahedra and Octahedra. Discret. Comput. Geom. 2011, 46, 799–818. [Google Scholar] [CrossRef]
- Chen, E.R.; Engel, M.; Glotzer, S.C. Dense Crystalline Dimer Packings of Regular Tetrahedra. Discret. Comput. Geom. 2010, 44, 253–280. [Google Scholar] [CrossRef]
- Kallus, Y.; Elser, V.; Gravel, S. Dense Periodic Packings of Tetrahedra with Small Repeating Units. Discret. Comput. Geom. 2010, 44, 245–252. [Google Scholar] [CrossRef]
- Conway, J.H.; Jiao, Y.; Torquato, S. New family of tilings of three-dimensional Euclidean space by tetrahedra and octahedra. Proc. Natl. Acad. Sci. USA 2011, 108, 11009–11012. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Farahani, M.V.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H.; et al. Gas hydrates in sustainable chemistry. Chem. Soc. Rev. 2020, 49, 5225–5309. [Google Scholar] [PubMed]
- Momma, K.; Ikeda, T.; Nishikubo, K.; Takahashi, N.; Honma, C.; Takada, M.; Furukawa, Y.; Nagase, T.; Kudoh, Y. New silica clathrate minerals that are isostructural with natural gas hydrates. Nat. Commun. 2011, 2, 196. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xu, K.; Zhang, Z.; Cao, X.; Huang, S.; Wu, J. Carbon clathrates as strong lightweight structures. Int. J. Mech. Sci. 2021, 202–203, 106509. [Google Scholar] [CrossRef]
- Boer, D.G.; Langerak, J.; Pescarmona, P.P. Zeolites as Selective Adsorbents for CO2 Separation. ACS Appl. Energy Mater. 2023, 6, 2634–2656. [Google Scholar] [CrossRef]
- Xie, H.; Yin, F.; Yu, T.; Wang, J.-T.; Liang, C. Mechanism for direct graphite-to-diamond phase transition. Sci. Rep. 2014, 4, 5930. [Google Scholar] [CrossRef]
- Zhu, S.-C.; Yan, X.-Z.; Liu, J.; Oganov, A.R.; Zhu, Q. A Revisited Mechanism of the Graphite-to-Diamond Transition at High Temperature. Matter 2020, 3, 864–878. [Google Scholar] [CrossRef]
- Chen, G.-W.; Zhu, S.-C.; Xu, L.; Li, Y.-M.; Liu, Z.-P.; Hou, Y.; Mao, H.-K. The Transformation Mechanism of Graphite to Hexagonal Diamond under Shock Conditions. JACS Au 2024, 4, 3413–3420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenczyk, J. Regular Dodecahedron-Based Network Structures. Symmetry 2024, 16, 1509. https://doi.org/10.3390/sym16111509
Jenczyk J. Regular Dodecahedron-Based Network Structures. Symmetry. 2024; 16(11):1509. https://doi.org/10.3390/sym16111509
Chicago/Turabian StyleJenczyk, Jacek. 2024. "Regular Dodecahedron-Based Network Structures" Symmetry 16, no. 11: 1509. https://doi.org/10.3390/sym16111509
APA StyleJenczyk, J. (2024). Regular Dodecahedron-Based Network Structures. Symmetry, 16(11), 1509. https://doi.org/10.3390/sym16111509