Gumbel–Logistic Unit Distribution with Application in Telecommunications Data Modeling
Abstract
:1. Introduction
2. The GLU Distribution
2.1. The Definition and Key Properties
- When , the RV X is unimodal and both-sides vanishing, that is,
- When and the function
2.2. Bayesian Inference
2.3. Moment-Based Characteristics
2.4. Hazard Rate and Quantile Functions
3. Parameters Estimation & Numerical Simulation Study
- Sample I is taken from a decreasing GLU distribution, with parameters and , which satisfies the inequality .
- Sample II is taken from a unimodal, positively skewed GLU distribution, with parameters and , so the equality holds.
- Sample III is taken from a unimodal, negatively skewed GLU distribution, with parameters and , which satisfies the inequality .
4. Applications of the GLU Distribution
- The first data set, named Series A, consists of data representing the percentage of service usage time of end users. The data was collected by Mirza [30] and as already mentioned, it is a part of the training data intended for machine learning and online coding and modeling.
- The second one (Series B), are also part of the same training data as above, and consistes of monthly end user fees (in Indian Rupees). In doing so, these data are normalized in relation to their maximum and minimum values, and in this way a set of data in a unit interval is obtained.
- Finally, the third set of data, designated as Series C, is obtained from training data authored by Mnassri [31], intended for the development of appropriate predictive models, i.e., training, cross-validation and performance testing of machine learning models. Therefore, Series C consists of data, which represent the total daily call length of end users (expressed in minutes), whereby the normalized values are obtained as the ratio of the call duration to the maximum call length.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Afify, A.Z.; Nassar, M.; Kumar, D.; Cordeiro, G.M. A New Unit Distribution: Properties and Applications. Electron. J. Appl. Stat. 2022, 15, 460–484. [Google Scholar]
- Nasiru, S.; Abubakari, A.G.; Chesneau, C. New Lifetime Distribution for Modeling Data on the Unit Interval: Properties, Applications and Quantile Regression. Math. Comput. Appl. 2022, 27, 105. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Azevedo-Farias, R.B.; Tovar-Falón, R. New Class of Unit-Power-Skew-Normal Distribution and Its Associated Regression Model for Bounded Responses. Mathematics 2022, 10, 3035. [Google Scholar] [CrossRef]
- Korkmaz, M.Ç.; Korkmaz, Z.S. The Unit Log–log Distribution: A New Unit Distribution with Alternative Quantile Regression Modeling and Educational Measurements Applications. J. Appl. Stat. 2023, 50, 889–908. [Google Scholar] [CrossRef] [PubMed]
- Shakhatreh, M.K.; Aljarrah, M.A. Bayesian Analysis of Unit Log-Logistic Distribution Using Non-Informative Priors. Mathematics 2023, 11, 4947. [Google Scholar] [CrossRef]
- Nasiru, S.; Abubakari, A.G.; Chesneau, C. The Arctan Power Distribution: Properties, Quantile and Modal Regressions with Applications to Biomedical Data. Math. Comput. Appl. 2023, 28, 25. [Google Scholar] [CrossRef]
- Nasiru, S.; Chesneau, C.; Ocloo, S.K. The Log-Cosine-Power Unit Distribution: A New Unit Distribution for Proportion Data Analysis. Decis. Anal. J. 2024, 10, 100397. [Google Scholar] [CrossRef]
- Alomair, G.; Akdoğan, Y.; Bakouch, H.S.; Erbayram, T. On the Maximum Likelihood Estimators’ Uniqueness and Existence for Two Unitary Distributions: Analytically and Graphically, with Application. Symmetry 2024, 16, 610. [Google Scholar] [CrossRef]
- Condino, F.; Domma, F. Unit Distributions: A General Framework, Some Special Cases, and the Regression Unit-Dagum Models. Mathematics 2023, 11, 2888. [Google Scholar] [CrossRef]
- Krishna, A.; Maya, R.; Chesneau, C.; Irshad, M.R. The Unit Teissier Distribution and Its Applications. Math. Comput. Appl. 2022, 27, 12. [Google Scholar] [CrossRef]
- Fayomi, A.; Hassan, A.S.; Baaqeel, H.; Almetwally, E.M. Bayesian Inference and Data Analysis of the Unit–Power Burr X Distribution. Axioms 2023, 12, 297. [Google Scholar] [CrossRef]
- Biçer, C.; Bakouch, H.S.; Biçer, H.D.; Alomair, G.; Hussain, T.; Almohisen, A. Unit Maxwell-Boltzmann Distribution and Its Application to Concentrations Poglutant Data. Axioms 2024, 13, 226. [Google Scholar] [CrossRef]
- Bakouch, H.S.; Hussain, T.; Tošić, M.; Stojanović, V.S.; Qarmalah, N. Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling. Mathematics 2023, 11, 4207. [Google Scholar] [CrossRef]
- Alsadat, N.; Taniş, C.; Sapkota, L.P.; Kumar, A.; Marzouk, W.; Gemeay, A.M. Inverse Unit Exponential Probability Distribution: Classical and Bayesian Inference With Applications. AIP Adv. 2024, 14, 55108. [Google Scholar] [CrossRef]
- Ramadan, A.T.; Tolba, A.H.; El-Desouky, B.S. A Unit Half-Logistic Geometric Distribution and Its Application in Insurance. Axioms 2022, 11, 676. [Google Scholar] [CrossRef]
- Nasiru, S.; Chesneau, C.; Abubakari, A.G.; Angbing, I.D. Generalized Unit Half-Logistic Geometric Distribution: Properties and Regression with Applications to Insurance. Analytics 2023, 2, 438–462. [Google Scholar] [CrossRef]
- Alghamdi, S.M.; Shrahili, M.; Hassan, A.S.; Mohamed, R.E.; Elbatal, I.; Elgarhy, M. Analysis of Milk Production and Failure Data: Using Unit Exponentiated Half Logistic Power Series Class of Distributions. Symmetry 2023, 15, 714. [Google Scholar] [CrossRef]
- Stojanović, V.S.; Jovanović Spasojević, T.; Jovanović, M. Laplace-Logistic Unit Distribution with Application in Dynamic and Regression Analysis. Mathematics 2024, 12, 2282. [Google Scholar] [CrossRef]
- Milovanović, G.V. Numerical Analysis I, 2nd ed.; Naučna knjiga: Belgrade, Serbia, 1991. [Google Scholar]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill International Edition: New York, NY, USA, 1987. [Google Scholar]
- Salinas, H.S.; Bakouch, H.S.; Almuhayfith, F.E.; Caimanque, W.E.; Barrios-Blanco, L.; Albalawi, O. Statistical Advancement of a Flexible Unitary Distribution and Its Applications. Axioms 2024, 13, 397. [Google Scholar] [CrossRef]
- Dudek, D.; Kuczmaszewska, A. Some Practical and Theoretical Issues Related to the Quantile Estimators. Stat. Papers, 2024; in press. [Google Scholar] [CrossRef]
- Serfling, R.J. Approximation Theorems of Mathematical Statistics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Ruckdeschel, P.; Kohl, M.; Stabla, T.; Camphausen, F. S4 Classes for Distributions. R News 2006, 6, 2–6. Available online: https://CRAN.R-project.org/doc/Rnews (accessed on 1 August 2024).
- Gross, L. Tests for Normality. R Package Version 1.0-2. 2013. Available online: http://CRAN.R-project.org/package=nortest (accessed on 1 August 2024).
- Gumbel, E.J. Statistical Theory of Extreme Values and Some Practical Applications; Applied Mathematics Series; U.S. Department of Commerce, National Bureau of Standards: Gaithersburg, MD, USA, 1954; Volume 33. [Google Scholar]
- Burke, E.J.; Perry, R.H.J.; Brown, S.J. An extreme value analysis of UK drought and projections of change in the future. J. Hydrol. 2010, 388, 131–143. [Google Scholar] [CrossRef]
- Pažun, B.; Langović, Z. Contemporary Information System Development Methodologies in Tourism Organizations. In Proceedings of the 4th International Scientific Conference, Tourism in Function of Development of the Republic of Serbia, Spa Tourism in Serbia and Experiences of Other Countries, Vrnjačka Banja, Serbia, 30 May–1 June 2019; pp. 467–481. Available online: https://www.tisc.rs/proceedings/index.php/hitmc/article/view/267 (accessed on 3 August 2024).
- Kaggle.com. Available online: https://www.kaggle.com (accessed on 2 August 2024).
- Mirza, M.H. “telecom_churn_dataset” (Dataset). 2023. Available online: https://www.kaggle.com/datasets/mirzahasnine/telecom-churn-dataset (accessed on 2 August 2024).
- Mnassri, B. “Telecom Churn Dataset” (Dataset). 2023. Available online: https://www.kaggle.com/datasets/mnassrib/telecom-churn-datasets (accessed on 2 August 2024).
- Kachiashvili, K.J.; Melikdzhanjan, D.I. Estimators of the Parameters of Beta Distribution. Sankhya B 2019, 81, 350–373. [Google Scholar] [CrossRef]
- Dey, S.; Mazucheli, J.; Nadarajah, S. Kumaraswamy Distribution: Different Methods of Estimation. Comp. Appl. Math. 2018, 37, 2094–2111. [Google Scholar] [CrossRef]
Statistics | ||||||
---|---|---|---|---|---|---|
Min. | 0.4015 | 0.5716 | 0.4237 | 0.6739 | 0.4660 | 0.8195 |
Mean | 0.5122 | 1.1906 | 0.5111 | 1.1519 | 0.5020 | 1.0488 |
Max. | 0.6101 | 1.8720 | 0.5807 | 1.7959 | 0.5515 | 1.2252 |
SD | 0.0388 | 0.9769 | 0.0221 | 0.2341 | 0.0122 | 0.0439 |
MSEE | 0.0403 | 0.3218 | 0.0252 | 0.1906 | 0.0168 | 0.0519 |
FEE (%) | 8.0623 | 32.177 | 5.0333 | 19.062 | 3.3707 | 5.1930 |
0.2933 | 0.5094 | 0.3035 | 0.6068 | 0.2930 | 0.4860 | |
(p-value) | (0.5997) | (0.1962) | (0.5704) | (0.1137) | (0.6004) | (0.2240) |
W | 0.9929 | 0.9876 * | 0.9946 | 0.9884 * | 0.9957 | 0.9902 |
(p-value) | (0.2815) | (0.0299) | (0.5138) | (0.0414) | (0.7109) | (0.0890) |
Statistics | ||||||
---|---|---|---|---|---|---|
Min. | 0.4299 | 1.2050 | 0.4731 | 1.3330 | 0.4821 | 1.5590 |
Mean | 0.4993 | 2.1085 | 0.4995 | 2.0420 | 0.5000 | 2.0206 |
Max. | 0.5615 | 2.6790 | 0.5194 | 2.2570 | 0.5155 | 2.1400 |
SD | 0.0212 | 1.0480 | 9.26 | 0.3665 | 5.58 | 0.2013 |
MSEE | 0.0181 | 0.3746 | 0.0105 | 0.0862 | 6.22 | 0.0356 |
FEE (%) | 3.6132 | 18.728 | 2.0931 | 4.3068 | 1.2481 | 1.7883 |
0.3802 | 1.0201 * | 0.2678 | 0.4337 | 0.2090 | 0.3384 | |
(p-value) | (0.4005) | (0.0108) | (0.6826) | (0.2998) | (0.8621) | (0.5021) |
W | 0.9914 | 0.9888 * | 0.9939 | 0.9900 | 0.9956 | 0.99031 |
(p-value) | (0.1504) | (0.0489) | (0.4049) | (0.0834) | (0.7032) | (0.0949) |
Statistics | ||||||
---|---|---|---|---|---|---|
Min. | 1.6710 | 1.0773 | 1.8330 | 1.1057 | 1.8621 | 1.1950 |
Mean | 1.9952 | 1.4901 | 1.9978 | 1.5052 | 2.0010 | 1.4970 |
Max. | 2.2941 | 1.9122 | 2.1605 | 1.7935 | 2.1072 | 1.7245 |
SD | 0.0949 | 0.6647 | 0.0606 | 0.2910 | 0.0326 | 0.1534 |
MSEE | 0.0949 | 0.1901 | 0.0523 | 0.0796 | 0.0327 | 0.0482 |
FEE (%) | 4.7450 | 12.675 | 2.6488 | 5.3096 | 1.6375 | 3.2158 |
0.3238 | 2.0687 ** | 0.2153 | 0.5059 | 0.3041 | 0.5160 | |
(p-value) | (0.5235) | (2.83 ) | (0.8460) | (0.2001) | (0.5686) | (0.1889) |
W | 0.99376 | 0.9806 ** | 0.9950 | 0.9903 | 0.9952 | 0.9908 |
(p-value) | (0.3865) | (1.74 ) | (0.5840) | (0.0949) | (0.6194) | (0.1189) |
Parameter/ | Series A | Series B | Series C | ||||||
---|---|---|---|---|---|---|---|---|---|
Statistic | GLU | BETA | KUM | GLU | BETA | KUM | GLU | BETA | KUM |
0.6603 | 0.8939 | 0.5989 | 2.3400 | 1.9597 | 1.5018 | 1.2055 | 4.7587 | 1.3589 | |
1.1541 | 1.9902 | 1.3840 | 0.8773 | 1.1883 | 1.0948 | 1.5639 | 4.6025 | 1.7445 | |
MSEE | 0.0118 | 0.0153 | 0.0215 | 5.54 | 7.98 | 0.0426 | 2.86 | 3.15 | 0.0573 |
AIC | −116.0 | −69.18 | −83.81 | −310.9 | −145.5 | −65.37 | −1423.5 | −1419.7 | −218.0 |
BIC | −110.0 | −63.13 | −77.76 | −294.3 | −128.9 | −48.78 | −1404.8 | −1401.0 | −199.3 |
0.0921 | 0.0987 | 0.1316 | 0.0623 | 0.0886 * | 0.1495 ** | 0.0392 | 0.0403 | 0.2398 ** | |
(p-value) | (0.5393) | (0.4498) | (0.1439) | (0.1654) | (0.0285) | (1.11 ) | (0.1858) | (0.1580) | (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, V.S.; Jovanović, M.; Pažun, B.; Langović, Z.; Grujčić, Ž. Gumbel–Logistic Unit Distribution with Application in Telecommunications Data Modeling. Symmetry 2024, 16, 1513. https://doi.org/10.3390/sym16111513
Stojanović VS, Jovanović M, Pažun B, Langović Z, Grujčić Ž. Gumbel–Logistic Unit Distribution with Application in Telecommunications Data Modeling. Symmetry. 2024; 16(11):1513. https://doi.org/10.3390/sym16111513
Chicago/Turabian StyleStojanović, Vladica S., Mihailo Jovanović, Brankica Pažun, Zlatko Langović, and Željko Grujčić. 2024. "Gumbel–Logistic Unit Distribution with Application in Telecommunications Data Modeling" Symmetry 16, no. 11: 1513. https://doi.org/10.3390/sym16111513
APA StyleStojanović, V. S., Jovanović, M., Pažun, B., Langović, Z., & Grujčić, Ž. (2024). Gumbel–Logistic Unit Distribution with Application in Telecommunications Data Modeling. Symmetry, 16(11), 1513. https://doi.org/10.3390/sym16111513