Dynamic Characterization and Optimization of Heat Flux and Thermal Efficiency of a Penetrable Moving Hemispherical Fin Embedded in a Shape Optimized Fe3O4-Ni/C6H18OSi2 Hybrid Nanofluid: L-IIIA Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Formulations
- The shape of the nanoparticles is spherical.
- As the nanoparticles considered in the proposed model are stable over wide range of temperature, the Surface emissivity is assumed stable over operational temperature.
- The heat transfer coefficient is constant. The heat transfer coefficient is often influenced by the temperature difference between the surface and the surroundings, thermal properties of the nanoparticles used in the fluid and the flow properties of the hybrid nanofluid. As the temperature difference between the surface and surrounding fluid is small, nanomaterials used in our study exhibit excellent stability for wide range of operating temperature and the flow of nanofluid is considered to be uniform, heat transfer coefficient is assumed to be constant. This simplifies the mathematical model in carrying out the analysis on the thermal performance of the model with prime focus on nanoparticle shape and concentration, as well as boundary condition.
- The hemispherical fin initially rests at a position with the base temperature and ambient temperature .
2.2. Mathematical Model
- is internal heat generation given as [43]:
- is the mass flow rate given as:
- is the passage velocity, from the Darcy’s model it is given as:
2.3. Physical Properties
2.4. Thermal Efficiency
2.5. Numerical Procedure
3. Results
4. Discussion
5. Conclusions
- An increase in convective , radiative , and wet porous media parameters resulted in a decrease in Θ, signifying an elevated heat transfer rate and reduced thermal resistance. This enables faster temperature regulation, reducing energy consumption and operational costs in industries like power generation and chemical processing. Also, the lifespan of the integrated chips used in power electronics that dissipate heat during its operation can be enhanced by incorporating this model as a heat sink.
- Higher values of power law index n, ambient non-dimensional temperature , internal heat generation B, and generation parameter increases Θ, implying an increased internal heat generation and a stronger thermal driving force.
- The shape factor of nanoparticles critically affects heat transfer, with lamina shaped nanoparticles outperforming the spherical and blade shapes. The better interaction of lamina shaped nanoparticle with the base fluid due to its larger surface area to volume ratio as compared to spherical and blade shapes improves thermal conductivity and convective heat transfer coefficient of the hybrid nanofluid, helps to maintain optimal heat in automotive radiators and aerospace cooling units. This can reduce the risk of component failure due to excessive heat. Although, the spherical shape at least enhances the thermal conductivity as compared to lamina and blade shapes, still it is preferred in microelectronics cooling due to its stability and lower impact on viscosity.
- Heat flux enhances with the increase in and values but decreases with increase in the values of and . Optimizing the heat flux can prevent thermal bottle necks that can improve the durability of the device through efficient heat dissipation in applications such as computer processors.
- Fin efficiency enhances with the increase in and values. but decreases with the increase in the values of and . Adjusting , values to enhance the fin efficiency can be useful in cooling the engine temperature more effectively in high performance vehicles, improving fuel efficiency. Optimizing the fin efficiency by adjusting and values can prolong the lifespan of solar panels through better energy conversion in hot climates.
- Limitations:
- Exploring alternative nanoparticle size, shapes and materials that can further improve the thermal performance of the system.
- Investigating non-toxic, biodegradable nanoparticles that can maintain high performance and yield sustainable solutions
- Utilizing machine learning and artificial intelligence to improve the accuracy of model predicting the thermal behaviour.
- Validating the model through experiments by replicating the simulated conditions, also conducting sensitivity analysis to identify the critical parameters that significantly affect the model. This will ensure the application of findings in the real-world scenarios. Further research can be explored on their long-term stability of hybrid nanofluids with different nanoparticle shapes and investigating their economic and environmental impacts of large-scale implementation, can enable the way for their commercial use.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Heat flux | f | Shape factor | |
Mass flow rate | Acceleration due to gravity (m/s2) | ||
Internal heat generation | h1 | Heat transfer coefficient (W/m2K) | |
Passage velocity | Convective heat transfer coefficient | ||
Volumetric coefficient of thermal expansion (1/K) | Latent heat of water evaporation (J/Kg) | ||
Effective dynamic viscosity (Kg/ms) | Porosity | ||
specific heat with constant pressure(J/KgK) | Surface emissivity of fin | ||
Effective density (Kg/m3) | Stefan –Boltzmann constant | ||
Local fin temperature (K) | Uniform mass transfer Coefficient | ||
Permeability (N/A2) | Steady velocity | ||
Ambient temperature of the fin (K) | ω | Humidity ratio of the saturated air | |
Base temperature | Humidity ratio of the surrounding air | ||
Axial distance (m) | Lewis Number | ||
The cross–sectional radius | Temperature sensitivity coefficient | ||
R1 | Radius of the Sphere | The dimensionless axial distance | |
Power law index | The dimensionless temperature | ||
constants | Ambient non-dimensional temperature | ||
Convective parameter | B | Internal heat generation | |
Radiative parameter | Generation parameter | ||
Wet porous media parameter | Thermal conductivity (W/mK) | ||
Empirical constant | Base fluid | ||
volume fraction of Ni and Fe3O4 | Nanofluid | ||
nanoparticle 1 (Ni), solid nanoparticle 2 (Fe3O4) | Hybrid nanofluid |
References
- Obalalu, A.M.; Ahmad, H.; Salawu, S.O.; Olayemi, O.A.; Odetunde, C.B.; Ajala, A.O.; Abdulraheem, A. Improvement of mechanical energy using thermal efficiency of hybrid nanofluid on solar aircraft wings: An application of renewable, sustainable energy. Waves Random Complex Media 2023, 1–30. [Google Scholar] [CrossRef]
- Benkhedda, M.; Boufendi, T.; Tayebi, T.; Chamkha, A.J. Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. J. Therm. Anal. Calorim. 2020, 140, 411–425. [Google Scholar] [CrossRef]
- Farhan, M.; Saad Hameed, M.; Suleman, H.M.; Anwar, M. Heat transfer enhancement in transformers by optimizing fin designs and using nanofluids. Arab. J. Sci. Eng. 2019, 44, 5733–5742. [Google Scholar] [CrossRef]
- Ma, F.; Zhu, T.; Zhang, Y.; Lu, X.; Zhang, W.; Ma, F. A review on heat transfer enhancement of phase change materials using fin tubes. Energies 2023, 16, 545. [Google Scholar] [CrossRef]
- Gaikwad, A.; Sathe, A.; Sanap, S. A design approach for thermal enhancement in heat sinks using different types of fins: A review. Front. Therm. Eng. 2023, 2, 980985. [Google Scholar] [CrossRef]
- Sharma, P.O.; Barewar, S.D.; Chougule, S.S. Experimental investigation of heat transfer enhancement in pool boiling using novel Ag/ZnO hybrid nanofluids. J. Therm. Anal. Calorim. 2021, 143, 1051–1061. [Google Scholar] [CrossRef]
- Dhumal, A.R.; Kulkarni, A.P.; Ambhore, N.H. A comprehensive review on thermal management of electronic devices. J. Eng. Appl. Sci. 2023, 70, 140. [Google Scholar] [CrossRef]
- Kannan, C.; Sathyabalan, P.; Ramanathan, S. A numerical research of heat transfer in rectangular fins with different perforations. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 367–371. [Google Scholar] [CrossRef]
- Abdulateef, A.M.; Mat, S.; Abdulateef, J.; Sopian, K.; Al-Abidi, A.A. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: A review. Renew. Sustain. Energy Rev. 2018, 82, 1620–1635. [Google Scholar] [CrossRef]
- Khudhur, D.S.; Al-Zuhairy, R.C.; Kassim, M.S. Thermal analysis of heat transfer with different fin geometry through straight plate-fin heat sinks. Int. J. Therm. Sci. 2022, 174, 107443. [Google Scholar] [CrossRef]
- Kundu, B.; Wongwises, S. A decomposition analysis on convecting–radiating rectangular plate fins for variable thermal conductivity and heat transfer coefficient. J. Frankl. Inst. 2012, 349, 966–984. [Google Scholar] [CrossRef]
- Kiwan, S.; Al-Nimr, M.A. Using porous fins for heat transfer enhancement. J. Heat Transfer 2001, 123, 790–795. [Google Scholar] [CrossRef]
- Ramesh, G.K.; Manohar, G.R.; Madhukesh, J.K.; Venkatesh, P.; Gireesha, B.J. Thermal aspects of a radiative-convective semi-spherical porous fin of functionally graded material. Eur. Phys. J. Plus 2024, 139, 97. [Google Scholar] [CrossRef]
- Asadian, H.; Zaretabar, M.; Ganji, D.D.; Gorji-Bandpy, M.; Sohrabi, S. Investigation of Heat Transfer in Rectangular Porous Fins (Si3N4) with Temperature-Dependent Internal Heat Generation by Galerkin’s Method (GM) and Akbari-Ganji’s Method (AGM). Int. J. Appl. Comput. Math. 2017, 3, 2987–3000. [Google Scholar] [CrossRef]
- Darvishi, M.T.; Gorla, R.S.R.; Khani, F. Natural convection and radiation in porous fins. Int. J. Numer. Methods Heat Fluid Flow 2013, 23, 1406–1420. [Google Scholar] [CrossRef]
- Khan, N.A.; Sulaiman, M.; Alshammari, F.S. Heat transfer analysis of an inclined longitudinal porous fin of trapezoidal, rectangular and dovetail profiles using cascade neural networks. Struct. Multidiscip. Optim. 2022, 65, 251. [Google Scholar] [CrossRef]
- Awasarmol, U.V.; Pise, A.T. An experimental investigation of natural convection heat transfer enhancement from perforated rectangular fins array at different inclinations. Exp. Therm. Fluid Sci. 2015, 68, 145–154. [Google Scholar] [CrossRef]
- Nabati, M.; Jalalvand, M.; Taherifar, S. Sinc collocation approach through thermal analysis of porous fin with magnetic field. J. Therm. Anal. Calorim. 2021, 144, 2145–2158. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Heyns, P.S.; Chamkha, A.J.; Shirkhani, A. Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J. Therm. Anal. Calorim. 2019, 138, 727–735. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Hosseinzadeh, K.; Hasibi, A.; Ganji, D.D. Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections. Case Stud. Therm. Eng. 2022, 30, 101757. [Google Scholar] [CrossRef]
- Atouei, S.A.; Hosseinzadeh, K.; Hatami, M.; Ghasemi, S.E.; Sahebi, S.A.R.; Ganji, D.D. Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods. Appl. Therm. Eng. 2015, 89, 299–305. [Google Scholar] [CrossRef]
- Manohar, G.R.; Venkatesh, P.; Gireesha, B.J.; Madhukesh, J.K.; Ramesh, G.K. Dynamics of hybrid nanofluid through a semi spherical porous fin with internal heat generation. Partial. Differ. Equ. Appl. Math. 2021, 4, 100150. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; No. ANL/MSD/CP-84938; CONF-951135-29; Argonne National Lab. (ANL): Argonne, IL, USA, 1995. [Google Scholar]
- Baslem, A.; Sowmya, G.; Gireesha, B.J.; Prasannakumara, B.C.; Rahimi-Gorji, M.; Hoang, N.M. Analysis of thermal behavior of a porous fin fully wetted with nanofluids: Convection and radiation. J. Mol. Liq. 2020, 307, 112920. [Google Scholar] [CrossRef]
- Kanthimathi, T.; Bhramara, P.; Atgur, V.; Rao, B.N.; Banapurmath, N.R.; Sajjan, A.M.; Krishnappa, S. Thermophysical properties and heat transfer in mono and hybrid nanofluids with different base fluids: An overview. J. Therm. Anal. Calorim. 2024, 149, 1649–1666. [Google Scholar] [CrossRef]
- Alfellag, M.A.; Kamar, H.M.; Sidik, N.A.C.; Muhsan, A.S.; Kazi, S.N.; Alawi, O.A.; Abidin, U. Rheological and thermophysical properties of hybrid nanofluids and their application in flat-plate solar collectors: A comprehensive review. J. Therm. Anal. Calorim. 2023, 148, 6645–6686. [Google Scholar] [CrossRef]
- Shaik, A.H.; Chakraborty, S.; Saboor, S.; Kumar, K.R.; Majumdar, A.; Rizwan, M.; Chandan, M.R. Cu-Graphene water-based hybrid nanofluids: Synthesis, stability, thermophysical characterization, and figure of merit analysis. J. Therm. Anal. Calorim. 2024, 149, 2953–2968. [Google Scholar] [CrossRef]
- Ribeiro, H.; Taha-Tijerina, J.J.; Gomez, O.; Acosta, E.; Pinto, G.M.; Moraes, L.R.; Lozano, K. Thermal Transport and Rheological Properties of Hybrid Nanofluids Based on Vegetable Lubricants. Nanomaterials 2023, 13, 2739. [Google Scholar] [CrossRef]
- Parashar, N.; Yahya, S.M. Thermophysical and rheological properties of hybrid nanofluids: A review on recent studies. J. Therm. Anal. Calorim. 2021, 147, 4411–4449. [Google Scholar] [CrossRef]
- Keerthi, M.L.; Gireesha, B.J.; Sowmya, G. Impact of shape-dependent hybrid nanofluid on transient efficiency of a fully wet porous longitudinal fin. Arab. J. Sci. Eng. 2024, 49, 2017–2026. [Google Scholar] [CrossRef]
- Francy, A.; Ragi, T.M.; Mohamed, A.P.; Ananthakumar, S. Fabrication of hydrophobic coatings on paper substrates using silicone oil impregnated silica: A promising sustainable packaging material. J. Coat. Technol. Res. 2024, 21, 1131–1144. [Google Scholar] [CrossRef]
- Pattnaik, P.K.; Pattnaik, J.R.; Mishra, S.R.; Nisar, K.S. Variation of the shape of Fe3O4-nanoparticles on the heat transfer phenomenon with the inclusion of thermal radiation. J. Therm. Anal. Calorim. 2022, 2022, 1859698. [Google Scholar] [CrossRef]
- Nadeem, M.; Purree, S.; Ashiq, M.G.B.; Ali, H.M. Stability Analysis of Fe3O4-OA-MWCNT Nanocomposite-Based Nanofluid. J. Nanomater. 2022, 2022, 1859698. [Google Scholar] [CrossRef]
- Ananth Subray, P.V.; Hanumagowda, B.N.; Varma, S.V.K.; Hatami, M. The impacts of shape factor and heat transfer on two-phase flow of nano and hybrid nanofluid in a saturated porous medium. Sci. Rep. 2022, 12, 21864. [Google Scholar] [CrossRef] [PubMed]
- Arifutzzaman, A.; Saidur, R.; Aslfattahi, N. MXene and functionalized graphene hybridized nanoflakes based silicone-oil nanofluids as new class of media for micro-cooling application. Ceram. Int. 2023, 49, 5922–5935. [Google Scholar] [CrossRef]
- Paul, A.; Patgiri, B. Modelling of silicone oil–based Casson hybrid nanofluid across a porous rotating disk. In Modeling and Simulation of Fluid Flow and Heat Transfer; CRC Press: Boca Raton, FL, USA, 2024; pp. 162–179. [Google Scholar]
- Saranya, S.; Al-Mdallal, Q.M. Computational study on nanoparticle shape effects of Al2O3-silicon oil nanofluid flow over a radially stretching rotating disk. Case Stud. Therm. Eng. 2021, 25, 100943. [Google Scholar] [CrossRef]
- Tao, P.; Shu, L.; Zhang, J.; Lee, C.; Ye, Q.; Guo, H.; Deng, T. Silicone oil-based solar-thermal fluids dispersed with PDMS-modified Fe3O4 @ graphene hybrid nanoparticles. Prog. Nat. Sci. Mater. Int. 2018, 28, 554–562. [Google Scholar] [CrossRef]
- Zhou, S.; Zhu, X.; Ma, L.; Yan, Q.; Wang, S. Outstanding superhydrophobicity and corrosion resistance on carbon-based film surfaces coupled with multi-walled carbon nanotubes and nickel nano-particles. Surf. Sci. 2018, 677, 193–202. [Google Scholar] [CrossRef]
- Devi, S.M.; Nivetha, A.; Prabha, I. Superparamagnetic properties and significant applications of iron oxide nanoparticles for astonishing efficacy—A review. J. Supercond. Nov. Magn. 2019, 32, 127–144. [Google Scholar] [CrossRef]
- Sharma, A.; Hickman, J.; Gazit, N.; Rabkin, E.; Mishin, Y. Nickel nanoparticles set a new record of strength. Nat. Commun. 2018, 9, 4102. [Google Scholar] [CrossRef]
- Jaji, N.D.; Lee, H.L.; Hussin, M.H.; Akil, H.M.; Zakaria, M.R.; Othman, M.B.H. Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnol. Rev. 2020, 9, 1456–1480. [Google Scholar] [CrossRef]
- Hatami, M.; Ahangar GR, M.; Ganji, D.D.; Boubaker, K. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Convers. Manag. 2014, 84, 533–540. [Google Scholar] [CrossRef]
- Gireesha, B.J.; Sowmya, G.; Khan, M.I.; Öztop, H.F. Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection. Comput. Methods Programs Biomed. 2020, 185, 105166. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Jan, R.U.; Khan, H.; Alam, M.M. Improving the thermal performance of (ZnO-Ni/H2O) hybrid nanofluid flow over a rotating system: The applications of Darcy Forchheimer theory. Waves Random Complex Media 2022, 1–17. [Google Scholar] [CrossRef]
- Nabwey, H.A.; Mahdy, A. Transient flow of micropolar dusty hybrid nanofluid loaded with Fe3O4-Ag nanoparticles through a porous stretching sheet. Results Phys. 2021, 21, 103777. [Google Scholar] [CrossRef]
- Teitel, M.; Schwabe, D.; Gelfgat, A.Y. Experimental and computational study of flow instabilities in a model of Czochralski growth. J. Cryst. Growth 2008, 310, 1343–1348. [Google Scholar] [CrossRef]
- Ouyang, C.; Akhtar, R.; Raja MA, Z.; Touseef Sabir, M.; Awais, M.; Shoaib, M. Numerical treatment with Lobatto IIIA technique for radiative flow of MHD hybrid nanofluid (Al2O3—Cu/H2O) over a convectively heated stretchable rotating disk with velocity slip effects. AIP Adv. 2020, 10, 055122. [Google Scholar] [CrossRef]
- Ramesh, G.K.; Manohar, G.R.; Venkatesh, P.; Gireesha, B.J.; Shah, N.A.; Chung, J.D. Thermal analysis through cylindrical porous fin having insulated tip: A hybrid nanomaterial approach. Phys. Scr. 2021, 96, 094014. [Google Scholar] [CrossRef]
Nanofluid | Hybrid Nanofluid | |
---|---|---|
Thermal Conductivity | ||
Viscosity | ||
Coefficient of thermal expansion | ||
Density | ||
Heat Capacity |
Physical Properties | (kg/m3) | (J/kg K) | (W/mK) | (1/K) |
---|---|---|---|---|
Ni | 8900 | 440 | 91 | |
Fe3O4 | 5180 | 670 | 9.7 | |
Silicone Oil | 960 | 1460 | 0.157 |
X | Ramesh et al. [49] RKF Numerical Technique | Ramesh et al. [49] LSM Numerical Technique | L-IIIA Numerical Technique | ERROR (L-IIIA-RK45) | ERROR (L-IIIA-LSM) |
---|---|---|---|---|---|
0.01 | 1.000000000 | 1.000000000 | 1.000000000 | 0.00000000 | 0.00000000 |
0.2 | 0.655127728 | 0.65521203 | 0.65523022 | 0.00010250 | 0.00001820 |
0.4 | 0.586479302 | 0.58653060 | 0.58661116 | 0.00013186 | 0.00008057 |
0.6 | 0.555051197 | 0.55507774 | 0.55519989 | 0.00014869 | 0.00012215 |
0.8 | 0.540395838 | 0.54039371 | 0.54055324 | 0.00015741 | 0.00015954 |
1 | 0.536215191 | 0.53617822 | 0.53637521 | 0.00016002 | 0.00019699 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pai, A.G.; Pai, R.G.; Pradeep, K.; Raj, L. Dynamic Characterization and Optimization of Heat Flux and Thermal Efficiency of a Penetrable Moving Hemispherical Fin Embedded in a Shape Optimized Fe3O4-Ni/C6H18OSi2 Hybrid Nanofluid: L-IIIA Solution. Symmetry 2024, 16, 1532. https://doi.org/10.3390/sym16111532
Pai AG, Pai RG, Pradeep K, Raj L. Dynamic Characterization and Optimization of Heat Flux and Thermal Efficiency of a Penetrable Moving Hemispherical Fin Embedded in a Shape Optimized Fe3O4-Ni/C6H18OSi2 Hybrid Nanofluid: L-IIIA Solution. Symmetry. 2024; 16(11):1532. https://doi.org/10.3390/sym16111532
Chicago/Turabian StylePai, Ammembal Gopalkrishna, Rekha G. Pai, Karthi Pradeep, and Likith Raj. 2024. "Dynamic Characterization and Optimization of Heat Flux and Thermal Efficiency of a Penetrable Moving Hemispherical Fin Embedded in a Shape Optimized Fe3O4-Ni/C6H18OSi2 Hybrid Nanofluid: L-IIIA Solution" Symmetry 16, no. 11: 1532. https://doi.org/10.3390/sym16111532
APA StylePai, A. G., Pai, R. G., Pradeep, K., & Raj, L. (2024). Dynamic Characterization and Optimization of Heat Flux and Thermal Efficiency of a Penetrable Moving Hemispherical Fin Embedded in a Shape Optimized Fe3O4-Ni/C6H18OSi2 Hybrid Nanofluid: L-IIIA Solution. Symmetry, 16(11), 1532. https://doi.org/10.3390/sym16111532