Generalized Galilean Rotations
Abstract
:1. Introduction
2. Generalized Galilean Transformation, Rotation, and Reflection
Generalized Galilean Rotation and Reflection
3. Parabolic Rotational Motion on the Plane
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Çolakoğlu, H.B.; Öztürk, İ.; Özdemir, M. Non-parabolic conical rotations. J. Comput. Appl. Math. 2023, 420, 114766. [Google Scholar] [CrossRef]
- Artıkbayev, A.; Kurudirek, A.; Akça, H. Occurrence of Galilean geometry. Appl. Comput. 2022, 2, 115–117. [Google Scholar] [CrossRef]
- Yaglom, I.M. A Simple Non-Euclidean Geometry and Its Physical Basis: An Elementary Account of Galilean Geometry and the Galilean Principle of Relativity; Springer: New York, NY, USA, 1979. [Google Scholar]
- Klinaku, S. Galilean transformation in polar coordinates and Doppler effect. Results Phys. 2021, 31, 104885. [Google Scholar] [CrossRef]
- Klinaku, S. Geometric representation of the Galilean transformation. Results Phys. 2022, 39, 105719. [Google Scholar] [CrossRef]
- Yaylı, Y.; Tütüncü, E.E. Generalized Galilean transformations and dual quaternions. Sci. Magna 2009, 5, 94–100. [Google Scholar]
- Kisil, V. Geometry of Mobius Transformations: Elliptic, Parabolic and Hyperbolic Actions of SL2(R); Imperial College Press: London, UK, 2012. [Google Scholar]
- Yaglom, I.M. Complex Numbers in Geometry; Academic Press: London, UK, 1968. [Google Scholar]
- Clifford, M.A. Preliminary sketch of biquaternions. Proc. Lond. Math. Soc. 1871, 1, 381–395. [Google Scholar] [CrossRef]
- Kotelnikov, A.P. Screw Calculus and Some Applications to Geometry and Mechanics; Scientific notes of Kazan University; URSS: Moskow, Russia, 1895. [Google Scholar]
- Study, E. Geometrie der Dynamen: Die Zusammensetzung von Kraften und Verwandte Gegenstande der Geometrie; Cornell University Library: New York, NY, USA, 1903. [Google Scholar]
- Behr, N.; Dattoli, G.; Lattanzi, A.; Licciardi, S. Dual numbers and operational umbral methods. Axioms 2019, 8, 77. [Google Scholar] [CrossRef]
- Bongardt, B. An analysis of the dual-complex unit circle with applications to line geometry. In Proceedings of the Conference on Geometry: Theory and Applications, Innsbruck, Austria, 3–7 June 2019. [Google Scholar]
- Torres del Castillo, G.F. Some applications in classical mechanics of the double and the dual numbers. Rev. Mex. Física E 2019, 65, 152–155. [Google Scholar] [CrossRef]
- Torres del Castillo, G.F.; Gutiérrez-Herrera, K.C. Double and dual numbers. SU (2) groups, two-component spinors and generating functions. Rev. Mex. Física 2020, 66, 418–423. [Google Scholar] [CrossRef]
- Büyükyılmaz, E.A.; Yaylı, Y.; Gök, İ. A new construction of the Sierpinski triangles with Galilean transformations. Math. Sci. Appl. E-Notes 2016, 4, 151–163. [Google Scholar] [CrossRef]
- Akar, M.; Yüce, S. Kuruoğlu N. One-parameter planar motion on the Galilean plane. Int. Electron. J. Geom. 2013, 6, 79–88. [Google Scholar]
- Gürses, N.; Yüce, S. One-parameter planar motions in generalized complex number plane. Adv. Appl. Clifford Algebr. 2015, 25, 889–903. [Google Scholar] [CrossRef]
- Valverde, A.; Tsiotras, P. Spacecraft robot kinematics using dual quaternions. Robotics 2018, 7, 64. [Google Scholar] [CrossRef]
- Majernik, V. Quaternion formulation of the Galilean space-time transformation. Acta Phys. Slovaca 2006, 56, 9–14. [Google Scholar]
- Akyar, B. Dual quaternions in spatial kinematics in an algebraic sense. Turk. J. Math. 2008, 32, 373–391. [Google Scholar]
- Naghi, M.F.; Abdel-Baky, R.A.; Mofarreh, F. Time-like ruled surface in one-parameter hyperbolic dual spherical motions. Abstr. Appl. Anal. 2022, 2022, 9323490. [Google Scholar] [CrossRef]
- Hussein, R.A.; Ali, A.A. Geometry of the line space associated to a given dual ruled surface. AIMS Math. 2022, 7, 8542–8557. [Google Scholar] [CrossRef]
- Harkin, A.A.; Harkin, J.B. Geometry of generalized complex numbers. Math. Mag. 2004, 77, 118–129. [Google Scholar] [CrossRef]
- Özdemir, M. Introduction to hybrid numbers. Adv. Appl. Clifford Algebr. 2018, 28, 11. [Google Scholar] [CrossRef]
- Yüce, S.; Akar, M. Dual plane and kinematics. Chiang Mai J. Sci. 2014, 41, 463–469. [Google Scholar]
- Rooney, J. Generalised complex numbers in mechanics. In Advances on Theory and Practice of Robots and Manipulators; Springer: Cham, Switzerland, 2014; pp. 55–62. [Google Scholar]
- Aragón-González, G.; Aragón, J.L.; Rodríguez-Andrade, M.A. The decomposition of an orthogonal transformation as a product of reflections. J. Math. Phys. 2006, 47, 013509. [Google Scholar] [CrossRef]
- Mackey, D.S.; Mackey, N.; Tisseur, F. G-reflectors: Analogues of householder transformations in scalar product spaces. Linear Algebra Its Appl. 2004, 385, 187–213. [Google Scholar] [CrossRef]
- Rodríguez-Andrade, M.A.; Aragón-González, G.; Aragón, J.L.; Verde-Star, L. An algorithm for the Cartan–Dieudonn’e theorem on generalized scalar product spaces. Linear Algebra Appl. 2011, 434, 1238–1254. [Google Scholar] [CrossRef]
- Gallier, J.; Xu, D. Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices. Int. J. Robot. Autom. 2003, 1, 10–20. [Google Scholar]
- Gallier, J. Remarks on the Cayley representation of orthogonal matrices and on perturbing the diagonal of a matrix to make it invertible. arXiv 2006, arXiv:math/0606320. [Google Scholar]
- Cayley, A. Sur quelques propriétés des déterminants gauches. J. FüR Die Reine Und Angew. Math. 1846, 32, 119–123. [Google Scholar] [CrossRef]
- Erdoğdu, M.; Özdemir, M. Cayley formula in Minkowski space-time. Rep. Math. Phys. 2015, 12, 1550058. [Google Scholar] [CrossRef]
- Norris, A.N. Euler-Rodrigues and Cayley formulae for rotation of elasticity tensors. Math. Mech. Solids 2008, 13, 465–498. [Google Scholar] [CrossRef]
- Selig, J.M. Geometric Fundamentals of Robotics; Springer: NewYork, NY, USA, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çolakoğlu, H.B.; Öztürk, İ.; Çelik, O.; Özdemir, M. Generalized Galilean Rotations. Symmetry 2024, 16, 1553. https://doi.org/10.3390/sym16111553
Çolakoğlu HB, Öztürk İ, Çelik O, Özdemir M. Generalized Galilean Rotations. Symmetry. 2024; 16(11):1553. https://doi.org/10.3390/sym16111553
Chicago/Turabian StyleÇolakoğlu, Harun Barış, İskender Öztürk, Oğuzhan Çelik, and Mustafa Özdemir. 2024. "Generalized Galilean Rotations" Symmetry 16, no. 11: 1553. https://doi.org/10.3390/sym16111553
APA StyleÇolakoğlu, H. B., Öztürk, İ., Çelik, O., & Özdemir, M. (2024). Generalized Galilean Rotations. Symmetry, 16(11), 1553. https://doi.org/10.3390/sym16111553