Asymmetry of Two-Dimensional Thermal Convection at High Rayleigh Numbers
Abstract
:1. Introduction
2. Equations and Numerical Settings
3. Flow Fields
3.1. Instantaneous Flow Fields
3.2. Time-Averaged Flow Fields
4. Double-Reflection Symmetry and Data Verification
4.1. Flow Fields
4.2. Mean Velocity and Temperature Profiles
4.3. Boundary Layer Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RBC | Rayleigh–Bénard convection |
DNS | Direct numerical simulation |
Rayleigh number | |
Prandtl number | |
Reynold number | |
Nusselt number | |
LSC | Large-scale circulation |
TL | Top left |
BR | Bottom right |
References
- Schumacher, J.; Sreenivasan, K.R. Colloquium: Unusual dynamics of convection in the Sun. Rev. Mod. Phys. 2020, 92, 041001. [Google Scholar] [CrossRef]
- Jiménez, J. Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 2012, 44, 27–45. [Google Scholar] [CrossRef]
- Rosenblat, S. Thermal convection in a vertical circular cylinder. J. Fluid Mech. 1982, 122, 395–410. [Google Scholar] [CrossRef]
- Behringer, R. Rayleigh-Bénard convection and turbulence in liquid helium. Rev. Mod. Phys. 1985, 57, 657. [Google Scholar] [CrossRef]
- Morris, S.W.; Bodenschatz, E.; Cannell, D.S.; Ahlers, G. Spiral defect chaos in large aspect ratio Rayleigh-Bénard convection. Phys. Rev. Lett. 1993, 71, 2026. [Google Scholar] [CrossRef]
- Bodenschatz, E.; Pesch, W.; Ahlers, G. Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 2000, 32, 709–778. [Google Scholar] [CrossRef]
- Castaing, B.; Gunaratne, G.; Heslot, F.; Kadanoff, L.; Libchaber, A.; Thomae, S.; Wu, X.Z.; Zaleski, S.; Zanetti, G. Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J. Fluid Mech. 1989, 204, 1–30. [Google Scholar] [CrossRef]
- Xie, Y.C.; Hu, Y.B.; Xia, K.Q. Universal fluctuations in the bulk of Rayleigh–Bénard turbulence. J. Fluid Mech. 2019, 878, R1. [Google Scholar] [CrossRef]
- Labarre, V.; Fauve, S.; Chibbaro, S. Heat-flux fluctuations revealing regime transitions in Rayleigh-Bénard convection. Phys. Rev. Fluids 2023, 8, 053501. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Samtaney, R.; Verma, M.K. Scaling and spatial intermittency of thermal dissipation in turbulent convection. Phys. Fluids 2019, 31, 075104. [Google Scholar] [CrossRef]
- Xu, A.; Shi, L.; Xi, H.D. Statistics of temperature and thermal energy dissipation rate in low-Prandtl number turbulent thermal convection. Phys. Fluids 2019, 31, 125101. [Google Scholar] [CrossRef]
- Vishnu, V.T.; De, A.K.; Mishra, P.K. Statistics of thermal plumes and dissipation rates in turbulent Rayleigh-Benard convection in a cubic cell. Int. J. Heat Mass Transf. 2022, 182, 121995. [Google Scholar] [CrossRef]
- Zhou, Q.; Sugiyama, K.; Stevens, R.J.; Grossmann, S.; Lohse, D.; Xia, K.Q. Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh-Bénard convection. Phys. Fluids 2011, 23, 125104. [Google Scholar] [CrossRef]
- He, J.C.; Bao, Y.; Chen, X. Turbulent boundary layers in thermal convection at moderately high Rayleigh numbers. Phys. Fluids 2024, 36, 025140. [Google Scholar] [CrossRef]
- Lohse, D.; Xia, K.Q. Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 2010, 42, 335–364. [Google Scholar] [CrossRef]
- Schumacher, J.; Scheel, J.D.; Krasnov, D.; Donzis, D.A.; Yakhot, V.; Sreenivasan, K.R. Small-scale universality in fluid turbulence. Proc. Natl. Acad. Sci. USA 2014, 111, 10961–10965. [Google Scholar] [CrossRef]
- Li, X.M.; He, J.D.; Tian, Y.; Hao, P.; Huang, S.D. Effects of Prandtl number in quasi-two-dimensional Rayleigh-Benard convection. J. Fluid Mech. 2021, 915, A60. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Tao, X.; Huang, S.D.; Bao, Y.; Xie, Y.C. Flow state transition induced by emergence of orbiting satellite eddies in two-dimensional turbulent Rayleigh-Bénard convection. J. Fluid Mech. 2024, 997, A54. [Google Scholar] [CrossRef]
- Sun, C.; Wu, J.z.; Meng, X.h.; Liu, C.x.; Xu, W.; Dong, Y.h.; Zhou, Q. Heat transfer and flow structure in centrally-confined 2-D Rayleigh-Bénard convection. J. Hydrodyn. 2024, 36, 772–780. [Google Scholar] [CrossRef]
- Zhu, X.; Stevens, R.J.; Shishkina, O.; Verzicco, R.; Lohse, D. Scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence. J. Fluid Mech. 2019, 869, R4. [Google Scholar] [CrossRef]
- Huang, M.; He, X. Effect of slip length on flow dynamics and heat transport in two-dimensional Rayleigh–Bénard convection. J. Turbul. 2022, 23, 492–514. [Google Scholar] [CrossRef]
- Ren, L.; Tao, X.; Xia, K.Q.; Xie, Y.C. Transition to fully developed turbulence in liquid-metal convection facilitated by spatial confinement. J. Fluid Mech. 2024, 981, R2. [Google Scholar] [CrossRef]
- Shishkina, O. Rayleigh-Bénard convection: The container shape matters. Phys. Rev. Fluids 2021, 6, 090502. [Google Scholar] [CrossRef]
- Pandey, A.; Krasnov, D.; Schumacher, J.; Samtaney, R.; Sreenivasan, K.R. Similarities between characteristics of convective turbulence in confined and extended domains. Phys. D Nonlinear Phenom. 2022, 442, 133537. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, K.Q. Heat transfer in a quasi-one-dimensional Rayleigh–Bénard convection cell. J. Fluid Mech. 2023, 973, R5. [Google Scholar] [CrossRef]
- Wang, Q.; Wan, Z.H.; Yan, R.; Sun, D.J. Flow organization and heat transfer in two-dimensional tilted convection with aspect ratio 0.5. Phys. Fluids 2019, 31, 025102. [Google Scholar] [CrossRef]
- Malkus, W.V. Discrete transitions in turbulent convection. Proc. R. Soc. Lond. A Math. Phys. Sci. 1954, 225, 185–195. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 1962, 5, 1374–1389. [Google Scholar] [CrossRef]
- Doering, C.R. Turning up the heat in turbulent thermal convection. Proc. Natl. Acad. Sci. USA 2020, 117, 9671–9673. [Google Scholar] [CrossRef]
- Iyer, K.P.; Scheel, J.D.; Schumacher, J.; Sreenivasan, K.R. Classical 1/3 scaling of convection holds up to Ra = 10(15). Proc. Natl. Acad. Sci. USA 2020, 117, 201922794. [Google Scholar] [CrossRef]
- Lohse, D.; Shishkina, O. Ultimate turbulent thermal convection. Phys. Today 2023, 76, 26–32. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, D.; Liu, S.; Sun, C. Experimental evidence for the existence of the ultimate regime in rapidly rotating turbulent thermal convection. Phys. Rev. Lett. 2022, 129, 204502. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Funfschilling, D.; Nobach, H.; Bodenschatz, E.; Ahlers, G. Transition to the ultimate state of turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 2012, 108, 024502. [Google Scholar] [CrossRef] [PubMed]
- Niemela, J.J.; Skrbek, L.; Sreenivasan, K.R.; Donnelly, R.J. The wind in confined thermal convection. J. Fluid Mech. 2001, 449, 169–178. [Google Scholar] [CrossRef]
- Borońska, K.; Tuckerman, L.S. Standing and travelling waves in cylindrical Rayleigh–Bénard convection. J. Fluid Mech. 2006, 559, 279–298. [Google Scholar] [CrossRef]
- Xia, K.Q.; Sun, C.; Zhou, S.Q. Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 2003, 68, 066303. [Google Scholar] [CrossRef]
- Sun, C.; Xi, H.D.; Xia, K.Q. Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 2005, 95, 074502. [Google Scholar] [CrossRef]
- Chen, X.; Hussain, F.; She, Z.S. Quantifying wall turbulence via a symmetry approach. Part 2. Reynolds stresses. J. Fluid Mech. 2018, 850, 401–438. [Google Scholar] [CrossRef]
- Heslot, F.; Castaing, B.; Libchaber, A. Transitions to turbulence in helium gas. Phys. Rev. A 1987, 36, 5870. [Google Scholar] [CrossRef]
- Lui, S.L.; Xia, K.Q. Spatial structure of the thermal boundary layer in turbulent convection. Phys. Rev. E 1998, 57, 5494. [Google Scholar] [CrossRef]
- Wang, J.; Xia, K.Q. Spatial variations of the mean and statistical quantities in the thermal boundary layers of turbulent convection. Eur. Phys. J. B 2003, 32, 127–136. [Google Scholar] [CrossRef]
- Pandey, A.; Verma, M.K.; Barma, M. Reversals in infinite-Prandtl-number Rayleigh-Bénard convection. Phys. Rev. E 2018, 98, 023109. [Google Scholar] [CrossRef] [PubMed]
- Silano, G.; Sreenivasan, K.R.; Verzicco, R. Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between 10−1 and 104 and Rayleigh numbers between 105 and 109. J. Fluid Mech. 2010, 662, 409–446. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Q.; Sun, C. Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh-Benard convection. J. Fluid Mech. 2017, 814, 165–184. [Google Scholar] [CrossRef]
- He, J.C.; Duan, P.Y.; Chen, X. Double-reflection symmetry of thermal convection for Rayleigh number up to 1010. Phys. Fluids 2024, 36, 105113. [Google Scholar] [CrossRef]
- Pandey, A. Thermal boundary layer structure in low–Prandtl–number turbulent convection. J. Fluid Mech. 2021, 910, A13. [Google Scholar] [CrossRef]
- Bao, Y.; Luo, J.H.; Ye, M.X. Parallel direct method of DNS for two-dimensional turbulent Rayleigh-Benard convection. J. Mech. 2017, 34, 159. [Google Scholar] [CrossRef]
- Shishkina, O.; Stevens, R.J.A.M.; Grossmann, S.; Lohse, D. Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 2010, 12, 075022. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Q. Low-Prandtl-number effects on global and local statistics in two-dimensional Rayleigh–Bénard convection. Phys. Fluids 2024, 36, 015107. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.X.; Jiang, N.; Liu, Y.L.; Lu, Z.M.; Qiu, X.; Zhou, Q. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection. Phys. Rev. E 2017, 96, 023105. [Google Scholar] [CrossRef]
1000 | 33 | |||||
1000 | 27 | |||||
1000 | 20 | |||||
1000 | 16 | |||||
1000 | 13 | |||||
1000 | 26 | |||||
400 | 21 | |||||
400 | 18 | |||||
400 | 14 | |||||
600 | 30 | |||||
400 | 36 | |||||
400 | 28 | |||||
400 | 22 | |||||
200 | 40 | |||||
200 | 30 | |||||
200 | 51 | |||||
300 | 41 | |||||
200 | 57 | |||||
50 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.-C.; Bao, Y.; Chen, X. Asymmetry of Two-Dimensional Thermal Convection at High Rayleigh Numbers. Symmetry 2024, 16, 1583. https://doi.org/10.3390/sym16121583
He J-C, Bao Y, Chen X. Asymmetry of Two-Dimensional Thermal Convection at High Rayleigh Numbers. Symmetry. 2024; 16(12):1583. https://doi.org/10.3390/sym16121583
Chicago/Turabian StyleHe, Jian-Chao, Yun Bao, and Xi Chen. 2024. "Asymmetry of Two-Dimensional Thermal Convection at High Rayleigh Numbers" Symmetry 16, no. 12: 1583. https://doi.org/10.3390/sym16121583
APA StyleHe, J.-C., Bao, Y., & Chen, X. (2024). Asymmetry of Two-Dimensional Thermal Convection at High Rayleigh Numbers. Symmetry, 16(12), 1583. https://doi.org/10.3390/sym16121583