Unified Supersymmetric Description of Shape-Invariant Potentials within and beyond the Natanzon Class
Abstract
:1. Intoduction
2. Preliminaries
2.1. The Basics of Supersymmetric Quantum Mechanics (SUSYQM)
2.2. The General PI Class Potentials and Their Rational Extensions
3. Unified Discussion
3.1. The General Results
3.2. Special Case: ,
3.3. Special Case: ,
3.4. Special Case: ,
3.5. Special Case: ,
4. Specializing to the Three PI Class Potentials
4.1. : The Generalized Pöschl–Teller Potential and Its Rational Extension
4.2. : The Scarf I Potential and Its Rational Extension
4.3. : The Scarf II Potential—The Real Version and Its Rational Extension
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Natanzon, G.A. General properties of potentials for which the Schrödinger equation can be solved by means of hypergeometric functions. Teor. Mat. Fiz. 1979, 38, 146–153. [Google Scholar] [CrossRef]
- Cordero, P.; Salamó, S. Algebraic solution for the Natanzon confluent potentials. J. Phys. A Math. Gen. 1991, 24, 5299–5305. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1970. [Google Scholar]
- Bhattacharjie, A.; Sudarshan, E.C.G. A class of solvable potentials. Nuovo Cim. 1962, 25, 864–879. [Google Scholar] [CrossRef]
- Lévai, G. A search for shape-invariant solvable potentials. J. Phys. A Math. Gen. 1989, 22, 689–702. [Google Scholar] [CrossRef]
- Witten, E. Dynamical Breaking of Supersymmetry. Nucl. Phys. B 1981, 188, 513. [Google Scholar] [CrossRef]
- Cooper, F.; Khare, A.; Sukhatme, U. Supersymmetry and Quantum Mechanics. Phys. Rep. 1995, 251, 267. [Google Scholar] [CrossRef]
- Junker, G. Supersymmetric Methods in Quantum and Statistical Physics; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Darboux, G. Sur une proposition relative aux équations linéaires. C. R. Acad. Sci. 1982, 94, 1456. [Google Scholar]
- Gendenshtein, L.E. Derivation of exact spectra of the Schrödinger equation by means of supersymmetry. JETP Lett. 1983, 38, 356–359. [Google Scholar]
- Infeld, L.; Hull, T.D. The Factorization Method. Rev. Mod. Phys. 1951, 23, 21. [Google Scholar] [CrossRef]
- Schrödinger, E. A Method of Determining Quantum-Mechanical Eigenvalues and Eigenfunctions. Proc. R. Ir. Acad. A 1940, 46, 9. [Google Scholar]
- Schrödinger, E. The factorization of the hypergeometric equation. Proc. R. Ir. Acad. A 1941/1942, 47, 53–54. [Google Scholar]
- Gómez-Ullate, D.; Kamran, N.; Milson, R. An extended class of orthogonal polynomials defined by a Sturm-Liouville problem. J. Math. Anal. Appl. 2009, 359, 352. [Google Scholar] [CrossRef]
- Gómez-Ullate, D.; Kamran, N.; Milson, R. An extension of Bochner’s problem: Exceptional invariant subspaces. J. Approx. Theor. 2010, 162, 987. [Google Scholar] [CrossRef]
- Quesne, C. Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry. J. Phys. A Math. Theor. 2008, 41, 392001. [Google Scholar] [CrossRef]
- Bagchi, B.; Quesne, C.; Roychoudhury, R. Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of symmetry. Pramana J. Phys. 2009, 73, 337. [Google Scholar] [CrossRef]
- Midya, B.; Roy, B. Infinite families of (non)-Hermitian Hamiltonians associated with exceptional Xm Jacobi polynomials. J. Phys. A Math. Theor. 2013, 46, 175201. [Google Scholar] [CrossRef]
- Ronveaux, A. (Ed.) Heun’s Differential Equations; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Takemura, K. Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial. J. Phys. A Math. Theor. 2012, 45, 085211. [Google Scholar] [CrossRef]
- Lévai, G. Potentials from the Polynomial Solutions of the Confluent Heun Equation. Symmetry 2023, 15, 461. [Google Scholar] [CrossRef]
- Ishkhanyan, A.M. Schrödinger potentials solvable in terms of the general Heun functions. Ann. Phys. 2018, 388, 456–471. [Google Scholar] [CrossRef]
- Lévai, G.; Soltész, T. Unified supersymmetric transformations for the harmonic oscillator and its rational extension. Eur. J. Phys. 2020, 41, 025403. [Google Scholar] [CrossRef]
- Cooper, F.; Ginocchio, J.N.; Khare, A. Relationship between supersymmetry and solvable potentials. Phys. Rev. D 1987, 36, 2458. [Google Scholar] [CrossRef]
- Odake, S.; Sasaki, R. Krein-Adler transformations for shape-invariant potentials and pseudo virtual states. J. Phys. A 2013, 46, 245201. [Google Scholar] [CrossRef]
- Sukumar, C.V. Supersymmetric quantum mechanics and the inverse scattering method. J. Phys. A Math. Gen. 1985, 18, 2937. [Google Scholar] [CrossRef]
- Sukumar, C.V. Supersymmetric quantum mechanics of one dimensional systems. J. Phys. A Math. Gen. 1985, 18, 2917. [Google Scholar] [CrossRef]
- Ancarani, L.U.; Baye, D. Iterative supersymmetric construction of phase-equivalent potentials. Phys. Rev. A 1992, 46, 206. [Google Scholar] [CrossRef]
- Lévai, G.; Baye, D.; Sparenberg, J.-M. Analytical results on generating phase-equivalent potentials by supersymmetry: Removal and addition of bound states. Lect. Not. Phys. 1997, 488, 363. [Google Scholar]
- Baye, D.; Sparenberg, J.-M. Supersymmetric transformations of real potentials on the line. J. Phys. A Math. Gen. 1995, 28, 5079. [Google Scholar]
- Frank, W.M.; Land, D.J.; Spector, R.M. Singular potentials. Rev. Mod. Phys. 1971, 43, 36. [Google Scholar] [CrossRef]
- Lévai, G. PT Symmetry in Natanzon-class Potentials. Int. J. Theor. Phys. 2015, 54, 2724. [Google Scholar] [CrossRef]
- Quesne, C. Extending Romanowski polynomials in quantum mechanics. J. Math. Phys. 2013, 54, 122103. [Google Scholar] [CrossRef]
- Raposo, A.P.; Weber, H.J.; Alvarez-Castillo, D.E.; Kirchbach, M. Romanowski polynomials in selected physics models. Cent. Eur. J. Phys. 2007, 5, 253. [Google Scholar]
- Bender, C.M.; Dorey, P.E.; Dunning, C.; Fring, A.; Hook, D.W.; Jones, H.F.; Kuzhel, S.; Lévai, G.; Tateo, R. PT Symmetry in Quantum and Classical Physics; World Scientific Publishing Europe Ltd.: London, UK, 2019. [Google Scholar]
- Lévai, G.; Znojil, M. The interplay of supersymmetry and PT symmetry in quantum mechanics: A case study for the Scarf II potential. J. Phys. A Math. Gen. 2002, 35, 8793. [Google Scholar] [CrossRef]
- Acar, Y.C.; Acevedo, L.; Kuru, S. Unusual isospectral factorizations of shape invariant Hamiltonians with Scarf II potential. Phys. Scr. 2023, 98, 125229. [Google Scholar] [CrossRef]
- Yadav, R.K.; Kumari, N.; Khare, A.; Mandal, B.P. Group theoretic approach to rationally extended shape invariant potentials. Ann. Phys. 2015, 359, 46–54. [Google Scholar] [CrossRef]
- Lévai, G. A class of exactly solvable potentials related to the Jacobi polynomials. J. Phys. A Math. Gen. 1991, 24, 131. [Google Scholar] [CrossRef]
- Ginocchio, J.N. A class of exactly solvable potentials. I. One-dimensional Schrödinger equation. Ann. Phys. 1984, 152, 203. [Google Scholar] [CrossRef]
- Ginocchio, J.N. A class of exactly solvable potentials II. The three-dimensional Schrödinger equation. Ann. Phys. 1985, 159, 467. [Google Scholar] [CrossRef]
- Dutt, R.; Khare, A.; Varshni, Y.P. New class of conditionally exactly solvable potentials in quantum mechanics. J. Phys. A Math. Gen. 1995, 28, L107. [Google Scholar] [CrossRef]
- Lévai, G. Gradual spontaneous breakdown of PT symmetry in a solvable potential. J. Phys. A Math. Theor. 2012, 45, 444020. [Google Scholar] [CrossRef]
- Milson, R. Liouville transformation and exactly solvable Schrödinger equations. Int. J. Theor. Phys. 1998, 37, 1735. [Google Scholar] [CrossRef]
- Natanson, G. Overlapping of Lévai’s and Milson’s e-tangent-polynomial potentials. along symmetric curves. Axioms 2023, 12, 584. [Google Scholar] [CrossRef]
- Odake, S.; Sasaki, R. Infinitely many shape invariant potentials and new orthogonal polynomials. Phys. Lett. B 2009, 679, 414. [Google Scholar] [CrossRef]
- Odake, S.; Sasaki, R. Another set of infinitely many exceptional (Xl) Laguerre polynomials. Phys. Lett. B 2010, 684, 173. [Google Scholar] [CrossRef]
- Gómez-Ullate, D.; Kamran, N.; Milson, R. Exceptional orthogonal polynomials and the Darboux transformation. J. Phys. A Math. Theor. 2010, 43, 434016. [Google Scholar] [CrossRef]
- Gómez-Ullate, D.; Kamran, N.; Milson, R. On orthogonal polynomials spanning a non-standard flag. Contemp. Math. 2012, 563, 51. [Google Scholar]
Transformation | ||||
---|---|---|---|---|
convergent | divergent | convergent | divergent | |
convergent | divergent | divergent | convergent | |
Spectrum modification | deletes g.s. | adds new g.s. | none | none |
j, k | t | s | p | q | ||||
---|---|---|---|---|---|---|---|---|
0, 0 | ||||||||
0 | ||||||||
0, 1 | ||||||||
1, 0 | ||||||||
1, 1 | ||||||||
0 | ||||||||
C | p, q | |||||
---|---|---|---|---|---|---|
0 | ∞ | 1 | ∞ | |||
0 | 1 | , | ||||
∞ | ∞ | n. a. |
j, k | Condition | t | s | in | in | ||||
---|---|---|---|---|---|---|---|---|---|
0, 0 | |||||||||
0 | |||||||||
0, 1 | |||||||||
1, 0 | |||||||||
1, 1 | |||||||||
0 | |||||||||
j, k | Condition | Condition | t | s | in | in | |||
---|---|---|---|---|---|---|---|---|---|
0, 0 | |||||||||
0 | |||||||||
0, 1 | |||||||||
1, 0 | |||||||||
1, 1 | |||||||||
0 | |||||||||
j, k | Condition | t | s | ||||
---|---|---|---|---|---|---|---|
0, 0 | |||||||
complex | |||||||
complex |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soltész, T.; Pethő, L.F.; Lévai, G. Unified Supersymmetric Description of Shape-Invariant Potentials within and beyond the Natanzon Class. Symmetry 2024, 16, 174. https://doi.org/10.3390/sym16020174
Soltész T, Pethő LF, Lévai G. Unified Supersymmetric Description of Shape-Invariant Potentials within and beyond the Natanzon Class. Symmetry. 2024; 16(2):174. https://doi.org/10.3390/sym16020174
Chicago/Turabian StyleSoltész, Tibor, Levente Ferenc Pethő, and Géza Lévai. 2024. "Unified Supersymmetric Description of Shape-Invariant Potentials within and beyond the Natanzon Class" Symmetry 16, no. 2: 174. https://doi.org/10.3390/sym16020174
APA StyleSoltész, T., Pethő, L. F., & Lévai, G. (2024). Unified Supersymmetric Description of Shape-Invariant Potentials within and beyond the Natanzon Class. Symmetry, 16(2), 174. https://doi.org/10.3390/sym16020174