Performance Analysis and Simulation of IRS-Aided Wireless Networks Communication
Abstract
:1. Introduction
1.1. Background Information
1.2. Related Works
1.3. Motivation and Contributions
- We scrutinized a novel ORS-IRS algorithm predicated on IRS to assess the efficacy of the wireless communication system.
- In order to juxtapose the spectrum efficiency behaviors within CF-M-MIMO and DF relaying systems, an examination of the spectrum efficiencies was conducted concerning the number of antennas/elements. Concurrently, the Spectrum Efficiency (SE) expression derived for the proposed ORS-IRS was employed in the comparative analysis.
- The comparison of wireless communication systems, utilizing the number of antennas/elements, is elucidated in terms of energy efficiency for all three methods.
1.4. Outline
2. System Model and Problem Definition
2.1. Cell-Free Massive MIMO
2.2. Decode-and-Forward (DF) Relaying
2.3. Intelligent Reflecting Surfaces
2.4. Problem Definition
3. Proposed ORS Method with IRS
- Enhanced Signal Power: ORS-IRS boosts signal power by reflecting electromagnetic waves, resulting in a stronger and more reliable communication channel.
- Improved Multipath Propagation: ORS-IRS governs multipath propagation, mitigating the interference of delayed signals with noise and thereby enhancing communication quality.
- Increased Channel Capacity: ORS-IRS can augment the communication channel’s capacity, facilitating higher data rates and accommodating more users simultaneously.
Algorithm 1 ORS-IRS Algorithm. |
Require: p, , , , , , N.
|
4. Numerical Performance Comparison
- Channel Capacity Limitations: After a point, adding more antennas or items may keep the overall transmission rate at a certain level due to channel capacity limitations. Channel capacity may reach saturation at a certain point, meaning that additional capacity increases do not improve energy efficiency.
- Mismatch: As you add more antennas or items, you may need more processing power and resources to optimize the system. If these extra resources are associated with energy consumption, the increase in energy efficiency may be limited.
- Proximity Effect: Antennas or items that are too close together can be limiting factors at some point due to enhanced multiple paths and interference. Therefore, adding additional antennas or elements may have a limited effect on energy efficiency.
- Fading Effects: Multipath effects can increase excessive noise or fading effects with the addition of additional antennas or elements, which can have a negative impact on energy efficiency.
- Frame Limitations: Within the framework of a particular application or protocol, the transmission system may be limited to a certain number of antennas or elements. Therefore, adding more antennas or elements after a certain point may have limited impact on energy efficiency.
5. Conclusions, Discussion, and Future Work
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Zhuang, Z.; Kim, S. IRS-Assisted Hybrid Secret Key Generation. Symmetry 2023, 15, 1906. [Google Scholar] [CrossRef]
- Lin, W.Y.; Chang, T.H.; Tseng, S.M. Deep Learning-Based Cross-Layer Power Allocation for Downlink Cell-Free Massive Multiple-Input-Multiple-Output Video Communication Systems. Symmetry 2023, 15, 1968. [Google Scholar] [CrossRef]
- Kumar, P.; Dhaka, K. Performance of Wireless Powered DF Relay System Under Nakagami-m Fading: Relay Assists Energy-Constrained Source. IEEE Syst. J. 2020, 14, 2497–2507. [Google Scholar] [CrossRef]
- Ren, S.; Shen, K.; Zhang, Y.; Li, X.; Chen, X.; Luo, Z.Q. Configuring Intelligent Reflecting Surface With Performance Guarantees: Blind Beamforming. IEEE Trans. Wirel. Commun. 2023, 22, 3355–3370. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W. Joint Beam Training and Positioning for Intelligent Reflecting Surfaces Assisted Millimeter Wave Communications. IEEE Trans. Wirel. Commun. 2021, 20, 6282–6297. [Google Scholar] [CrossRef]
- Abeywickrama, S.; Zhang, R.; Wu, Q.; Yuen, C. Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization. IEEE Trans. Commun. 2020, 68, 5849–5863. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W. Intelligent Reflecting Surface Configurations for Smart Radio Using Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2022, 40, 2335–2346. [Google Scholar] [CrossRef]
- Ma, Q.; Gao, W.; Xiao, Q.; Ding, L.; Gao, T.; Zhou, Y.; Gao, X.; Yan, T.; Liu, C.; Gu, Z.; et al. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform. eLight 2022, 2, 11. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Q.; Luo, S.S.; Ye, F.; Cui, H.; Cui, T. Touch-Programmable Metasurface for Various Electromagnetic Manipulations and Encryptions. Small 2022, 18, 2203871. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Rahman, M.H.; Shin, B.S.; Oh, J.H.; You, Y.H.; Song, H.K. Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review. Sensors 2022, 22, 5405. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Cui, S. Channel Estimation for Intelligent Reflecting Surface Assisted Multiuser Communications: Framework, Algorithms, and Analysis. IEEE Trans. Wirel. Commun. 2020, 19, 6607–6620. [Google Scholar] [CrossRef]
- He, Z.Q.; Yuan, X. Cascaded Channel Estimation for Large Intelligent Metasurface Assisted Massive MIMO. IEEE Wirel. Commun. Lett. 2020, 9, 210–214. [Google Scholar] [CrossRef]
- Wang, P.; Fang, J.; Duan, H.; Li, H. Compressed Channel Estimation for Intelligent Reflecting Surface-Assisted Millimeter Wave Systems. IEEE Signal Process. Lett. 2020, 27, 905–909. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J.; Xu, W.; Ng, D.W.K.; Sun, H. Cascaded Channel Estimation for IRS-Assisted mmWave Multi-Antenna With Quantized Beamforming. IEEE Commun. Lett. 2021, 25, 593–597. [Google Scholar] [CrossRef]
- Song, Y.; Khandaker, M.R.A.; Tariq, F.; Wong, K.K.; Toding, A. Truly Intelligent Reflecting Surface-Aided Secure Communication Using Deep Learning. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Virtual, 25–28 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Ozdogan, O.; Björnson, E.; Larsson, E.G. Intelligent Reflecting Surfaces: Physics, Propagation, and Pathloss Modeling. IEEE Wirel. Commun. Lett. 2020, 9, 581–585. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Schober, R. Optimal Beamforming for MISO Communications via Intelligent Reflecting Surfaces. In Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Han, Y.; Tang, W.; Jin, S.; Wen, C.K.; Ma, X. Large Intelligent Surface-Assisted Wireless Communication Exploiting Statistical CSI. IEEE Trans. Veh. Technol. 2019, 68, 8238–8242. [Google Scholar] [CrossRef]
- Zhang, J.; Björnson, E.; Matthaiou, M.; Ng, D.W.K.; Yang, H.; Love, D.J. Prospective Multiple Antenna Technologies for Beyond 5G. IEEE J. Sel. Areas Commun. 2020, 38, 1637–1660. [Google Scholar] [CrossRef]
- Chakraborty, S.; Demir, O.T.; Björnson, E.; Giselsson, P. Efficient Downlink Power Allocation Algorithms for Cell-Free Massive MIMO Systems. IEEE Open J. Commun. Soc. 2021, 2, 168–186. [Google Scholar] [CrossRef]
- Demir, O.T.; Björnson, E.; Sanguinetti, L. Foundations of User-Centric Cell-Free Massive MIMO. Now Found. Trends Signal Process. 2021, 14, 162–472. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Scalable Cell-Free Massive MIMO Systems. IEEE Trans. Commun. 2020, 68, 4247–4261. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Making Cell-Free Massive MIMO Competitive With MMSE Processing and Centralized Implementation. IEEE Trans. Wirel. Commun. 2020, 19, 77–90. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, J.; Björnson, E.; Ai, B. Impact of Channel Aging on Cell-Free Massive MIMO Over Spatially Correlated Channels. IEEE Trans. Wirel. Commun. 2021, 20, 6451–6466. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, J.; Ai, B. UAV Communications With WPT-Aided Cell-Free Massive MIMO Systems. IEEE J. Sel. Areas Commun. 2021, 39, 3114–3128. [Google Scholar] [CrossRef]
- Shi, E.; Zhang, J.; Chen, S.; Zheng, J.; Zhang, Y.; Kwan Ng, D.W.; Ai, B. Wireless Energy Transfer in RIS-Aided Cell-Free Massive MIMO Systems: Opportunities and Challenges. IEEE Commun. Mag. 2022, 60, 26–32. [Google Scholar] [CrossRef]
- Demir, O.T.; Björnson, E. Joint Power Control and LSFD for Wireless-Powered Cell-Free Massive MIMO. IEEE Trans. Wirel. Commun. 2021, 20, 1756–1769. [Google Scholar] [CrossRef]
- Guo, M.; Gursoy, M.C. Joint Activity Detection and Channel Estimation in Cell-Free Massive MIMO Networks With Massive Connectivity. IEEE Trans. Commun. 2022, 70, 317–331. [Google Scholar] [CrossRef]
- Van Chien, T.; Björnson, E.; Larsson, E.G. Joint Power Allocation and Load Balancing Optimization for Energy-Efficient Cell-Free Massive MIMO Networks. IEEE Trans. Wirel. Commun. 2020, 19, 6798–6812. [Google Scholar] [CrossRef]
- Guo, F.; Lu, H.; Gu, Z. Joint Power and User Grouping Optimization in Cell-Free Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2022, 21, 991–1006. [Google Scholar] [CrossRef]
- Guenach, M.; Gorji, A.A.; Bourdoux, A. Joint Power Control and Access Point Scheduling in Fronthaul-Constrained Uplink Cell-Free Massive MIMO Systems. IEEE Trans. Commun. 2021, 69, 2709–2722. [Google Scholar] [CrossRef]
- Buzzi, S.; D’Andrea, C.; Zappone, A.; D’Elia, C. User-Centric 5G Cellular Networks: Resource Allocation and Comparison With the Cell-Free Massive MIMO Approach. IEEE Trans. Wirel. Commun. 2020, 19, 1250–1264. [Google Scholar] [CrossRef]
- Masoumi, H.; Emadi, M.J. Performance Analysis of Cell-Free Massive MIMO System With Limited Fronthaul Capacity and Hardware Impairments. IEEE Trans. Wirel. Commun. 2020, 19, 1038–1053. [Google Scholar] [CrossRef]
- Bashar, M.; Akbari, A.; Cumanan, K.; Ngo, H.Q.; Burr, A.G.; Xiao, P.; Debbah, M.; Kittler, J. Exploiting Deep Learning in Limited-Fronthaul Cell-Free Massive MIMO Uplink. IEEE J. Sel. Areas Commun. 2020, 38, 1678–1697. [Google Scholar] [CrossRef]
- Femenias, G.; Riera-Palou, F. Fronthaul-Constrained Cell-Free Massive MIMO With Low Resolution ADCs. IEEE Access 2020, 8, 116195–116215. [Google Scholar] [CrossRef]
- Zhao, Y.; Niemegeers, I.G.; De Groot, S.H. Power Allocation in Cell-Free Massive MIMO: A Deep Learning Method. IEEE Access 2020, 8, 87185–87200. [Google Scholar] [CrossRef]
- Souryal, M.; Vojcic, B. Performance of Amplify-and-Forward and Decode-and-Forward Relaying in Rayleigh Fading with Turbo Codes. In Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006; Volume 4, p. IV. [Google Scholar] [CrossRef]
- Levin, G.; Loyka, S.L. Amplify-and-forward versus decode-and-forward relaying: Which is better? In Proceedings of the 22th International Zurich Seminar on Communications (IZS), Zurich, Switzerland, 29 February–2 March 2012. [Google Scholar] [CrossRef]
- Woradit, K. Decode-and-Forward Relaying Protocol with Optimal Degrees of Freedom for Proactively Selective Wireless Relay Networks. In Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C), Bangkok, Thailand, 11–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Khormuji, M.N.; Larsson, E.G. Cooperative transmission based on decode-and-forward relaying with partial repetition coding. IEEE Trans. Wirel. Commun. 2009, 8, 1716–1725. [Google Scholar] [CrossRef]
- Chaoudhry, B.; Hassan, S.; Speidel, J.; Jung, H. Energy Efficiency of a Decode-and-Forward Multiple-Relay Network with Rate Adaptive LDPC Codes. Sensors 2019, 19, 4793. [Google Scholar] [CrossRef] [PubMed]
- Çağan, A.T.; Koç, G.B.; Yakın, H.; Çiloğlu, B.; Ashgar, M.Z.; Özgün, E.; Hämäläinen, J.; Öztürk, M. UAV-based Maritime Communications: Relaying to Enhance the Link Quality. arXiv 2023, arXiv:2304.08650. [arXiv:cs.NI/2304.08650]. [Google Scholar]
- Moon, J. Performance Comparison of Relay-Based Covert Communications: DF, CF and AF. Sensors 2023, 23, 8747. [Google Scholar] [CrossRef]
- Hu, H.; Xu, K.; Xie, W.; Xia, X.; Wang, M. Multi-Intelligent Reflecting Surface Assisted Cell-free Massive MIMO Downlink Transmission. In Proceedings of the 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021; pp. 531–537. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, K.; Xie, W.; Shen, Z.; Wei, C.; Liu, J.; Sun, L. Aerial intelligent reflecting surface-enhanced cell-free massive MIMO for high-mobility communication: Joint Doppler compensation and power optimization. EURASIP J. Adv. Signal Process. 2021, 2021, 68. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, K.; Xia, X.; Xie, W.; Xu, J. Achievable Rate Optimization for Aerial Intelligent Reflecting Surface-Aided Cell-Free Massive MIMO System. IEEE Access 2021, 9, 3828–3837. [Google Scholar] [CrossRef]
- Huang, R.; Wong, V.W. Towards Reliable Communications in Intelligent Reflecting Surface-Aided Cell-Free MIMO Systems. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Huang, S.; Ye, Y.; Xiao, M.; Poor, H.V.; Skoglund, M. Decentralized Beamforming Design for Intelligent Reflecting Surface-Enhanced Cell-Free Networks. IEEE Wirel. Commun. Lett. 2021, 10, 673–677. [Google Scholar] [CrossRef]
- Noh, T.; Choi, J. Cell-Free MIMO Systems Powered by Intelligent Reflecting Surfaces. IEEE Commun. Lett. 2022, 26, 1076–1080. [Google Scholar] [CrossRef]
- Cover, T.; Gamal, A. Capacity theorems for the relay channel. IEEE Trans. Inf. Theory 1979, 25, 572–584. [Google Scholar] [CrossRef]
- Laneman, J.; Tse, D.; Wornell, G. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Björnson, E.; Ozdogan, O.; Larsson, E.G. Intelligent Reflecting Surface Versus Decode-and-Forward: How Large Surfaces are Needed to Beat Relaying? IEEE Wirel. Commun. Lett. 2020, 9, 244–248. [Google Scholar] [CrossRef]
- Mahama, S.; Asiedu, D.K.P.; Lee, K.J. Simultaneous Wireless Information and Power Transfer for Cooperative Relay Networks with Battery. IEEE Access 2017, 5, 13171–13178. [Google Scholar] [CrossRef]
- Huang, C.; Chen, G.; Gong, Y.; Wen, M.; Chambers, J.A. Deep Reinforcement Learning-Based Relay Selection in Intelligent Reflecting Surface Assisted Cooperative Networks. IEEE Wirel. Commun. Lett. 2021, 10, 1036–1040. [Google Scholar] [CrossRef]
- 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification. Technical Specification (TS) 36.331, 3rd Generation Partnership Project (3GPP), 2017. Version 14.2.2. ETSI: France, 2017. Available online: https://www.etsi.org/deliver/etsi_ts/136300_136399/136331/14.02.02_60/ts_136331v140202p.pdf (accessed on 8 February 2024).
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikmen, O. Performance Analysis and Simulation of IRS-Aided Wireless Networks Communication. Symmetry 2024, 16, 254. https://doi.org/10.3390/sym16020254
Dikmen O. Performance Analysis and Simulation of IRS-Aided Wireless Networks Communication. Symmetry. 2024; 16(2):254. https://doi.org/10.3390/sym16020254
Chicago/Turabian StyleDikmen, Osman. 2024. "Performance Analysis and Simulation of IRS-Aided Wireless Networks Communication" Symmetry 16, no. 2: 254. https://doi.org/10.3390/sym16020254
APA StyleDikmen, O. (2024). Performance Analysis and Simulation of IRS-Aided Wireless Networks Communication. Symmetry, 16(2), 254. https://doi.org/10.3390/sym16020254