Soft Faint Continuity and Soft Faint Theta Omega Continuity between Soft Topological Spaces
Abstract
:1. Introduction and Preliminaries
2. Soft Faint Continuity
3. Soft Set-Connected Functions
4. Soft Faint -Continuity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zadehgtrfd, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar]
- Pawlak, Z. dswRough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Molodtsov, D. Soft set theory—First results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
- Yang, J.; Yao, Y. Semantics of soft sets and three-way decision with soft sets. Knowl.-Based Syst. 2020, 194, 105538. [Google Scholar] [CrossRef]
- Alcantud, J.C.R. The semantics of N-soft sets, their applications, and a coda about three-way decision. Inf. Sci. 2022, 606, 837–852. [Google Scholar] [CrossRef]
- Gwak, J.; Garg, H.; Jan, N. Hybrid integrated decision-making algorithm for clustering analysis based on a bipolar complex fuzzy and soft sets. Alex. Eng. J. 2023, 67, 473–487. [Google Scholar] [CrossRef]
- Kguller, O. A soft set theoretic approach to network complexity and a case study for Turkish Twitter users. Appl. Soft Comput. 2023, 143, 110344. [Google Scholar] [CrossRef]
- Dalkılıc, O.; Demirtas, N. Algorithms for covid-19 outbreak using soft set theory: Estimation and application. Soft Comput. 2022, 27, 3203–3211. [Google Scholar] [CrossRef]
- Balcı, M.A.; Batrancea, L.M.; Akguller, O. Network-induced soft sets and stock market applications. Mathematics 2022, 10, 3964. [Google Scholar] [CrossRef]
- Qin, H.; Fei, Q.; Ma, X.; Chen, W. A new parameter reduction algorithm for soft sets based on chi-square test. Appl. Intell. 2021, 51, 7960–7972. [Google Scholar] [CrossRef]
- Ma, X.; Qin, H. Soft set based parameter value reduction for decision making application. IEEE Access 2019, 7, 35499–35511. [Google Scholar] [CrossRef]
- Maji, P.; Roy, A.R.; Biswas, R. An application of soft sets in a decision making problem. Comput. Math. Appl. 2002, 44, 1077–1083. [Google Scholar] [CrossRef]
- Shabir, M.; Naz, M. On soft topological spaces. Comput. Math. Appl. 2011, 61, 1786–1799. [Google Scholar] [CrossRef]
- Alqahtani, M.H.; Ameen, Z.A. Soft nodec spaces. AIMS Math. 2024, 9, 3289–3302. [Google Scholar] [CrossRef]
- Al-shami, T.M.; Mhemdi, A. On soft parametric somewhat-open sets and applications via soft topologies. Heliyon 2023, 9, e21472. [Google Scholar] [CrossRef] [PubMed]
- Ameen, Z.A.; Alqahtani, M.H. Baire category soft sets and their symmetric local properties. Symmetry 2023, 15, 1810. [Google Scholar] [CrossRef]
- Al-shami, T.M.; Mhemdi, A.; Abu-Gdairi, R. A Novel framework for generalizations of soft open sets and its applications via soft topologies. Mathematics 2023, 11, 840. [Google Scholar] [CrossRef]
- Mhemdi, A. Novel types of soft compact and connected spaces inspired by soft Q-sets. Filomat 2023, 37, 9617–9626. [Google Scholar]
- Guan, X. Comparison of two types of separation axioms in soft topological spaces. J. Intell. Fuzzy Syst. 2023, 44, 2163–2171. [Google Scholar] [CrossRef]
- Majumdar, P.; Samanta, S.K. On soft mappings. Comput. Math. Appl. 2010, 60, 2666–2672. [Google Scholar] [CrossRef]
- Kharal, A.; Ahmad, B. Mappings on soft classes. New Math. Nat. Comput. 2011, 7, 471–481. [Google Scholar] [CrossRef]
- Aygunoglu, A.; Aygun, H. Some notes on soft topological spaces. Neural Comput. Appl. 2012, 21, 113–119. [Google Scholar] [CrossRef]
- Al-shami, T.M.; Mhemdi, A. A weak form of soft α-open sets and its applications via soft topologies. AIMS Math. 2023, 8, 11373–11396. [Google Scholar] [CrossRef]
- Al-shami, T.M.; Ameen, Z.A.; Asaad, B.A.; Mhemdi, A. Soft bi-continuity and related soft functions. J. Math. Comput. Sci. 2023, 30, 19–29. [Google Scholar] [CrossRef]
- Al Ghour, S. Soft θω-open sets and soft θω-continuity. Int. J. Fuzzy Log. Intel. Syst. 2022, 22, 89–99. [Google Scholar] [CrossRef]
- Al Ghour, S. Soft ωp-open sets and soft ωp-continuity in soft topological spaces. Mathematics 2021, 9, 2632. [Google Scholar] [CrossRef]
- Al-shami, T.M.; Alshammari, I.; Asaad, B.A. Soft maps via soft somewhere dense sets. Filomat 2020, 34, 3429–3440. [Google Scholar] [CrossRef]
- Ozturk, T.Y.; Bayramov, S. Topology on soft continuous function spaces. Math. Comput. Appl. 2017, 22, 32. [Google Scholar]
- Zorlutuna, I.; Cakir, H. On continuity of soft mappings. Appl. Math. Inf. Sci. 2015, 9, 403–409. [Google Scholar] [CrossRef]
- Akdag, M.; Ozkan, A. Soft β-open sets and soft β-continuous functions. Sci. World J. 2014, 2014, 843456. [Google Scholar] [CrossRef]
- Akdag, M.; Ozkan, A. Soft α-open sets and soft α-continuous functions. Abstr. Appl. Anal. 2014, 2014, 891341. [Google Scholar] [CrossRef]
- Al Ghour, S.; Bin-Saadon, A. On some generated soft topological spaces and soft homogeneity. Heliyon 2019, 5, e02061. [Google Scholar] [CrossRef] [PubMed]
- Al Ghour, S.; Hamed, W. On two classes of soft sets in soft topological spaces. Symmetry 2020, 12, 265. [Google Scholar] [CrossRef]
- Velicko, N.V. H-closed topological spaces. Mat. Sb. 1966, 70, 98–112, English translation: Amer. Math. Soc. Transl. 1968, 78, 102–118. [Google Scholar]
- Kwak, J.H. Set connected mapping. Kyungpook Math. J. 1971, 11, 169–172. [Google Scholar]
- Levine, N. A decomposition of continuity in topological spaces. Am. Math. Mon. 1961, 68, 44–46. [Google Scholar] [CrossRef]
- Long, P.E.; Herrington, L.L. The Tθ-topology and faintly continuous functions. Kyungpook Math. J. 1982, 22, 7–14. [Google Scholar]
- Al Ghour, S.; Irshidat, B. On θω continuity. Heliyon 2020, 6, e03349. [Google Scholar] [CrossRef]
- Yuksel, S.; Tozlu, N.; Ergul, Z.G. Soft regular generalized closed sets in soft topological spaces. Int. J. Math. Anal. 2014, 8, 355–367. [Google Scholar] [CrossRef]
- Lin, F. Soft connected spaces and soft paracompact spaces. Int. J. Math. Comput. Sci. 2013, 7, 277–283. [Google Scholar]
- Asaad, B.A. Results on soft extremally disconnectedness of soft topological spaces. J. Math. Comput. Sci. 2017, 17, 448–464. [Google Scholar] [CrossRef]
- Thakur, S.S.; Rajput, A.S. Connectedness between soft sets. New Math. Nat. Comput. 2018, 14, 53–71. [Google Scholar] [CrossRef]
- Prasad, A.K.; Thakur, S.S. Soft almost regular spaces. Malaya J. Mat. 2019, 7, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Sayed, O.R.; Hassan, N.; Khalil, A.M. A decomposition of soft continuity in soft topological spaces. Afr. Mat. 2017, 28, 887–898. [Google Scholar] [CrossRef]
- Thakur, S.S.; Rajput, A.S. Soft almost continuous mappings. J. Adv. Stud. Topol. 2017, 2017, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, D.N.; Megaritis, A.C.; Petropoulos, V.I. On soft topological spaces. Appl. Math. Inform. Sci. 2013, 7, 1889–1901. [Google Scholar] [CrossRef]
- Jeyashri, S.; Tharmar, S.; Ramkumar, G. On soft δ-continuous functions. Int. J. Math. Trends Tech. 2017, 45, 28–34. [Google Scholar]
- Al Ghour, S.; Al-Saadi, H. Soft ω-θ-continuity and soft weak θω-continuity between soft topological spaces. Mathematics 2023, 11, 4092. [Google Scholar] [CrossRef]
- Al Ghour, S. On some weaker forms of soft continuity and their decomposition theorems. J. Math. Comput. Sci. 2023, 29, 317–328. [Google Scholar] [CrossRef]
- Noiri, T. Faint-continuity and set-connectedness. Kyungpook Math. J. 1984, 24, 173–178. [Google Scholar]
- Al Ghour, S. Weaker forms of soft regular and soft T2 soft topological spaces. Mathematics 2021, 9, 2153. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuzaid, D.; Naghi, M.; Al Ghour, S. Soft Faint Continuity and Soft Faint Theta Omega Continuity between Soft Topological Spaces. Symmetry 2024, 16, 268. https://doi.org/10.3390/sym16030268
Abuzaid D, Naghi M, Al Ghour S. Soft Faint Continuity and Soft Faint Theta Omega Continuity between Soft Topological Spaces. Symmetry. 2024; 16(3):268. https://doi.org/10.3390/sym16030268
Chicago/Turabian StyleAbuzaid, Dina, Monia Naghi, and Samer Al Ghour. 2024. "Soft Faint Continuity and Soft Faint Theta Omega Continuity between Soft Topological Spaces" Symmetry 16, no. 3: 268. https://doi.org/10.3390/sym16030268
APA StyleAbuzaid, D., Naghi, M., & Al Ghour, S. (2024). Soft Faint Continuity and Soft Faint Theta Omega Continuity between Soft Topological Spaces. Symmetry, 16(3), 268. https://doi.org/10.3390/sym16030268