The Post-Quasi-Static Approximation: An Analytical Approach to Gravitational Collapse
Abstract
:1. Introduction
- 1.
- First of all, it should be stressed that the main motivation to consider the PQSR is to have the possibility to study, in the simplest possible way, those aspects of the object directly related to the non-equilibrium situation, which for obvious reasons cannot be described within the QSR.
- 2.
- Since we are assuming the fact that we can approach the non-equilibrium by means of successive approximations, it goes without saying that not any self-gravitating fluid will satisfy this requirement. In particular, it is meaningless, from the physical point of view, to consider geodesic fluids in PQSR, since these fluids are always in the full dynamic regime (the only interaction in this case being the gravitational one).
- 3.
2. Basic Variables and Equations
2.1. The Metric
2.2. Energy–Momentum Tensor
2.3. Kinematical Variables
2.4. Transport Equations
2.5. Field Equations
2.6. Mass and Areal Velocity
3. The Exterior Spacetime and Junction Conditions
4. The Complexity Factor
The Homologous and Quasi-Homologous Evolution
5. Evolution Regimes
5.1. Static Regime
5.2. Quasi-Static Regime (QSR)
- The areal velocity U and the kinematical variables are small, (of order , with ), which in turn implies that dissipative variables and all first-order time derivatives of metric functions are also small, implying that we shall neglect terms of order and higher.
- From the above and the fact that the system always satisfies the equation of hydrostatic equilibrium, it follows from (27) that the second-order time derivatives of metric functions can be neglected.
5.3. Post-Quasi-Static Regime (PQSR)
- 1.
- Take an interior (“seed”) solution to Einstein equations, representing a fluid distribution of matter in equilibrium, with a given
- 2.
- Assume that the r dependence of the effective density is the same as that of , and .
- 3.
- Impose the vanishing complexity factor condition.
- 4.
- From the two conditions above, we are able to determine the metric functions up to two arbitrary functions of t.
- 5.
- For these functions of t, one has the junction condition (33).
- 6.
- In order to determine the remaining function and to integrate analytically (33), we have a large number of possible strategies. Here, we shall mention some of them, which may be based on the information obtained from the observables of the collapsing star. Such observables are the luminosity and the redshift. Alternatively, we may assume additional heuristic constraints on some other physical variables, or ad hoc mathematical conditions based in previous works on gravitational collapse, or simply justified by the fact that it allows for a simple integration of (33). We list below some possible strategies of the kind mentioned above.
- Assuming a specific form for the evolution of the redshift, we obtain again a relationship between the two arbitrary functions of t.
- We may consider a specific pattern evolution of the areal radius of the star, or equivalently of its velocity (). This could be useful if for example we want to check the possibility of a bouncing of the boundary surface.
- Assuming different profiles of either one of the two arbitrary functions of t, we can look for conditions allowing the formation (or not) of a horizon, according to (40).
6. Modeling
6.1. A Model with Homogenous Effective Energy Density
- The first model, is obtained by taking as our “seed” solution the well known Schwarzschild interior solution characterized by homogeneous energy density and isotropic pressure.
6.2. A Model Obtained from Tolman VI as Seed Solution
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schwarzschild, M. Structure and Evolution of the Stars; Dover: New York, NY, USA, 1958. [Google Scholar]
- Kippenhahn, R.; Weigert, A. Stellar Structure and Evolution; Springer: Berlin, Germany, 1990. [Google Scholar]
- Hansen, C.; Kawaler, S. Stellar Interiors: Physical Principles, Structure and Evolution; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Herrera, L.; Di Prisco, A. Two effects in slowly evolving dissipative self-gravitating spheres. Phys. Rev. D 1997, 55, 2044–2050. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bamba, K.; Bhatti, M.; Farwa, U. Quasi–static evolution of compact objects in modified gravity. Gen. Rel. Grav. 2022, 54, 7. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.; Farwa, U. Quasi–static approximation in the study of compact stars. Chin. J. Phys. 2022, 77, 2014. [Google Scholar] [CrossRef]
- Herrera, L.; Jiménez, J.; Ruggeri, G. Evolution of radiating fluid spheres in general relativity. Phys. Rev. D 1980, 22, 2305–2316. [Google Scholar] [CrossRef]
- Herrera, L.; Núñez, L. Evolution of radiating spheres in general relativity: A seminumerical approach. Fundam. Cosm. Phys. 1990, 14, 235–319. [Google Scholar]
- Herrera, L.; Barreto, W.; Di Prisco, A.; Santos, N.O. Relativistic gravitational collapse in non-comoving coordinates: The post-quasi-static approximation. Phys. Rev. D 2002, 65, 104004-15. [Google Scholar] [CrossRef]
- Herrera, L.; Barreto, W. Relativistic gravitational collapse in comoving coordinates: The post-quasi-static approximation. Int. J. Mod. Phys. D 2011, 20, 1265–1288. [Google Scholar] [CrossRef]
- Colgate, S.; White, R. The Hydrodynamic Behavior of Supernovae Explosions. Astrophys. J. 1966, 143, 626. [Google Scholar] [CrossRef]
- Bethe, H.; Wilson, J. Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 1985, 295, 14. [Google Scholar] [CrossRef]
- Arnett, W.; Bahcall, J.; Kirshner, R.; Woosley, S. Supernova 1987A. Ann. Rev. Astron. Astrophys. 1989, 27, 629. [Google Scholar] [CrossRef]
- McRay, R. Supernova 1987A revisited. Ann. Rev. Astron. Astrophys. 1993, 31, 175. [Google Scholar] [CrossRef]
- Marek, A.; Janka, H. Delayed Neutrino-Driven Supernova Explosions Aided by the Standing Accretion-Shock Instability. Astrophys. J. 2009, 694, 664. [Google Scholar] [CrossRef]
- Murphy, J.; Ott, C.; Burrows, A. A Model for Gravitational Wave Emission from Neutrino-Driven Core-Collapse Supernovae. Astrophys. J. 2009, 707, 1173. [Google Scholar] [CrossRef]
- Badenes, C. X-Ray Studies of Supernova Remnants: A Different View of Supernova Explosions. Proc. Nat. Acad. Sci. USA 2010, 107, 7141–7146. [Google Scholar] [CrossRef] [PubMed]
- Burrows, A.; Lattimer, J. The Birth of Neutron Stars. Astrophys. J. 1986, 307, 178. [Google Scholar] [CrossRef]
- Macher, J.; Schaffner-Bielich, J. Phase transitions in compact stars. Eur. J. Phys. 2005, 26, 341. [Google Scholar] [CrossRef]
- Sagert, I.; Hempel, M.; Greinert, C.; Schaffner-Bielich, J. Compact stars for undergraduates. Eur. J. Phys. 2006, 27, 577. [Google Scholar] [CrossRef]
- Lehner, L. Numerical relativity: A review. Class. Quantum Grav. 2001, 18, R25. [Google Scholar] [CrossRef]
- Alcubierre, M. The status of numerical relativity. In General Relativity and Gravitation; Florides, P., Nolan, B., Ottewill, A., Eds.; World Scientific: London, UK, 2005; p. 3. [Google Scholar]
- Papadopoulos, P.; Font, J.A. Relativistic hydrodynamics on space-like and null surfaces: Formalism and computations of spherically symmetric spacetimes. Phys. Rev. D 2000, 61, 024015. [Google Scholar] [CrossRef]
- Font, J.A. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity. Living Rev. Relativ. 2008, 11, 7. [Google Scholar] [CrossRef]
- Thirukkanesh, S.; Maharaj, S.D. Radiating relativistic matter in geodesic motion. J. Math. Phys. 2009, 50, 022502. [Google Scholar] [CrossRef]
- Thirukkanesh, S.; Maharaj, S.D. Mixed potentials in radiative stellar collapse. J. Math. Phys. 2010, 51, 072502. [Google Scholar] [CrossRef]
- Govender, M.; Bogadi, R.; Sharma, R.; Das, S. Gravitational collapse in spatially isotropic coordinates. Gen. Relativ. Gravit. 2015, 47, 25. [Google Scholar] [CrossRef]
- Ivanov, B. A different approach to anisotropic spherical collapse with shear and heat radiation. Int. J. Mod. Phys. D 2016, 25, 1650049. [Google Scholar] [CrossRef]
- Naidu, N.F.; Govender, M.; Thirukkanesh, S.; Maharaj, S.D. Radiating fluid sphere immersed in an anisotropic atmosphere. Gen. Relativ. Gravit. 2017, 49, 95. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Govender, M.; Leon, G. Temporal evolution of a radiating star via Lie symmetries. Eur. Phys. J. C 2021, 81, 718. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Non–static fluid spheres admitting a conformal Killing vector: Exact solutions. Universe 2022, 8, 296. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Expansion–free dissipative fluid spheres: Analytical models. Symmetry 2023, 15, 754. [Google Scholar] [CrossRef]
- Govender, M.; Bogadi, R.; Sharma, R.; Das, S. Radiating stars and Riccati equations in higher dimensions. Eur. Phys. J. C 2023, 83, 160. [Google Scholar]
- Bhatti, M.Z.; Yousaf, Z.; Sabir, I. Expansion free spherical anisotropic solutions. Int. J. Mod. Phys. D 2023, 32, 2350082. [Google Scholar] [CrossRef]
- Jaryal, S.; Chatterjee, A.; Kumar, A. Effects of electromagnetic field on a radiating star. Eur. Phys. J. C 2024, 84, 11. [Google Scholar] [CrossRef]
- Zahra, A.; Mardan, S. Five dimensional analysis of electromagnetism with heat flow in the post-quasi-static approximation. Eur. Phys. J. C 2023, 83, 231. [Google Scholar] [CrossRef]
- Zahra, A.; Mardan, S.; Noureen, I. Analysis of heat flow in the post-quasi-static approximation for gravitational collapse in five dimensions. Eur. Phys. J. C 2023, 83, 51. [Google Scholar] [CrossRef]
- Herrera, L. New definition of complexity for self–gravitating fluid distributions: The spherically symmetric case. Phys. Rev. D 2018, 97, 044010. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Definition of complexity for dynamical spherically symmetric dissipative self–gravitating fluid distributions. Phys. Rev. D 2018, 98, 104059. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Quasi–homologous evolution of self–gravitating systems with vanishing complexity factor. Eur. Phys. J. C 2020, 80, 631. [Google Scholar] [CrossRef]
- Herrera, L.; Santos, N.O. Local anisotropy in self–gravitating systems. Phys. Rep. 1997, 286, 53–130. [Google Scholar] [CrossRef]
- Herrera, L. Stabilty of the isotropic pressure condition. Phys. Rev. D 2020, 101, 104024. [Google Scholar] [CrossRef]
- Herrera, L.; Santos, N.O. Dynamics of dissipative gravitational collapse. Phys. Rev. D 2004, 70, 084004. [Google Scholar] [CrossRef]
- Di Prisco, A.; Herrera, L.; Le Denmat, G.; MacCallum, M.; Santos, N.O. Nonadiabatic charged spherical gravitational collapse. Phys. Rev. D 2007, 76, 064017. [Google Scholar] [CrossRef]
- Israel, W. Non-stationary irreversible thermodynamics: A causal relativistic theory. Ann. Phys. 1976, 100, 310–331. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J. Thermodynamic of non-stationary and transient effects in a relativistic gas. Phys. Lett. A 1976, 58, 213–215. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 1979, 118, 341–372. [Google Scholar] [CrossRef]
- Misner, C.; Sharp, D. Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse. Phys. Rev. 1964, 136, B571. [Google Scholar] [CrossRef]
- Cahill, M.; McVittie, G. Spherical Symmetry and Mass–Energy in General Relativity. I. General Theory. J. Math. Phys. 1970, 11, 1382. [Google Scholar] [CrossRef]
- Chan, R. Collapse of a radiating star with shear. Mon. Not. R. Astron. Soc. 1997, 288, 589–595. [Google Scholar] [CrossRef]
- Herrera, L.; Ospino, J.; Di Prisco, A.; Fuenmayor, E.; Troconis, O. Structure and evolution of self–gravitating objects and the orthogonal splitting of the Riemann tensor. Phys. Rev. D 2009, 79, 064025. [Google Scholar] [CrossRef]
- Tolman, R. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Phys. Rev. 1939, 55, 364. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. On the stability of the shear–free condition. Gen. Relativ. Gravit. 2010, 42, 1585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, L.; Di Prisco, A.; Ospino, J. The Post-Quasi-Static Approximation: An Analytical Approach to Gravitational Collapse. Symmetry 2024, 16, 341. https://doi.org/10.3390/sym16030341
Herrera L, Di Prisco A, Ospino J. The Post-Quasi-Static Approximation: An Analytical Approach to Gravitational Collapse. Symmetry. 2024; 16(3):341. https://doi.org/10.3390/sym16030341
Chicago/Turabian StyleHerrera, Luis, Alicia Di Prisco, and Justo Ospino. 2024. "The Post-Quasi-Static Approximation: An Analytical Approach to Gravitational Collapse" Symmetry 16, no. 3: 341. https://doi.org/10.3390/sym16030341
APA StyleHerrera, L., Di Prisco, A., & Ospino, J. (2024). The Post-Quasi-Static Approximation: An Analytical Approach to Gravitational Collapse. Symmetry, 16(3), 341. https://doi.org/10.3390/sym16030341