pq-Simpson’s Type Inequalities Involving Generalized Convexity and Raina’s Function
Abstract
:1. Introduction
- (a)
- Simpson’s one-third rule, a variant of Simpson’s quadrature formula, is a numerical integration technique that approximates definite integrals using quadratic polynomials. This method divides the interval into subintervals and employs a weighted average of function values for a more accurate estimation of the integral:
- (b)
- Simpson’s three-eighths rule, using quadratic polynomials, is a numerical integration approach that improves accuracy. This technique is particularly useful for approximating definite integrals over an interval, providing more precise results compared to simpler methods:
2. Quantum Derivatives and Integrals
3. Post Quantum Derivatives and Integrals
4. Identities
5. Main Results
Simpson’s Type Inequalities
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef]
- Pečaric, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 1–18. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 2. [Google Scholar] [CrossRef]
- Erden, S.; Iftikhar, S.; Delavar, M.R.; Kumam, P.; Kumam, P.T.W. On generalizations of some inequalities for convex functions via quantum integrals. RACSAM 2020, 114, 110. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Akdemir, A.O.; Kavurmaci, H.; Avci, M. On the Simpson’s inequality for coordinated convex functions. arXiv 2010, arXiv:1101.0075. [Google Scholar]
- Ernst, T.A. Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Vivas-Cortez, M.J.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. New Quantum Estimates of Trapezium-Type Inequalities for Generalized ϕ-Convex Functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2015, 21, 191–203. [Google Scholar]
- Bokulich, A.; Jaeger, G. Philosophy of Quantum Information Theory and Entaglement; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Khan, M.B.; Zaini, H.G.; Treanta, S.; Soliman, M.S.; Nanlaopon, K. Riemann-Liouville Fractional Integral Inequalities for Generalized Pre=Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanta, S.; Soliman, M.S.; Zaini, H.G.; Nanlaopon, K. Some Hadamard-Fejer Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D. Quantum Information, Computation and Cryptography: An Introductory Survey of Theory, Technology and Experiments; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef]
- Bermudo, S.; Kórus, P.; Valdés, J.N. On q-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the fundamental Theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Soontharanon, J.; Sitthiwirattham, T. On Fractional (p, q)-Calculus. Adv. Differ. Equ. 2020, 2020, 35. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E. Some integral inequalities via (p, q)-calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 1–12. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.-M. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives. Adv. Differ. Equ. 2021, 2021, 7. [Google Scholar] [CrossRef]
- Ali, M.A.; Alp, N.; Budak, H.; Chu, Y.-M.; Zhang, Z. On some new quantum midpoint type inequalities for twice quantum differentiable convex functions. Open Math. 2021, 19, 427–439. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; Ĭscan, Ĭ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ.-Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef]
- Budak, H. Some trapezoid and midpoint type inequalities for newly defined quantum integrals. Proyecciones 2021, 40, 199–215. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Zuo, X.; Butt, S.I.; Umar, M.; Budak, H.; Ali, M.A. Novel q-differentiable inequalities. Symmetry 2023, 15, 1576. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Ali, M.A.; Budak, H. On some new Maclaurin’s type inequalities for convex functions in q-calculus. Fractal Fract. 2023, 7, 572. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Tameru, A.M. New parameterized quantum integral inequalities via η-quasiconvexity. Adv. Differ. Equ. 2019, 2019, 425. [Google Scholar] [CrossRef]
- Khan, M.A.; Noor, M.; Nwaeze, E.R.; Chu, Y.-M. Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildrim, H. Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus. Math. Meth. Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Meth. Appl. Sci. 2020, 44, 378–390. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity (Cambridge Monographs on Mathematical Physics); Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Sengar, R.S.; Sharma, M.; Trivedi, A. Fractional calculus applied in solving instability phenomenon in fluid dynamics. Int. J. Civ. Eng. Technol. 2015, 6, 34–44. [Google Scholar]
- Ali, M.A.; Chu, Y.-M.; Budak, H.; Akkurt, A.; Yildrim, H. Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables. Adv. Differ. Equ. 2021, 2021, 25. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Akkurt, A.; Chu, Y.-M. Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus. Open Math. 2021, 19, 440–449. [Google Scholar] [CrossRef]
- Kunt, M.; İscan, İ.; Alp, N.; Sarikaya, M.Z. (p, q)-Hermite–Hadamard inequalities and (p, q)-estimates for midpoint inequalities via convex quasi-convex functions. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A MatemÁticas 2018, 112, 969–992. [Google Scholar] [CrossRef]
- Latif, M.A.; Kunt, M.; Dragomir, S.S.; İscan, İ. Post-quantum trapezoid type inequalities. AIMS Math. 2020, 5, 4011–4026. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Murtaza, G.; Baig, G.M.; Awan, M.U. Raina’s Function-Based Formulations of Right-Sided Simpson’s and Newton’s Inequalities for Generalized Coordinated Convex Functions. Symmetry 2023, 15, 1441. [Google Scholar] [CrossRef]
- Anderson, T.W. Some inequalities for symmetric convex sets with applications. Ann. Stat. 1996, 24, 753–762. [Google Scholar] [CrossRef]
- Boltyanski, V.G.; Castro, J.J. Centrally symmetric convex sets. J. Convex Anal. 2007, 14, 345–351. [Google Scholar]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Chu, Y.-M.; Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. New post-quantum analogues of Ostrowski-type inequalities using new definitions of left-right (p,q)-derivatives and definite integrals. Adv. Differ. Equ. 2020, 2020, 25. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Budak, H.; Kalsoom, H.; Agarwal, P. Some New Hermite–Hadamard and Related Inequalities for Convex Functions via (p,q)-Integral. Entropy 2021, 23, 828. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Baig, G.M.; Awan, M.U.; Brahim, K. pq-Simpson’s Type Inequalities Involving Generalized Convexity and Raina’s Function. Symmetry 2024, 16, 457. https://doi.org/10.3390/sym16040457
Vivas-Cortez M, Baig GM, Awan MU, Brahim K. pq-Simpson’s Type Inequalities Involving Generalized Convexity and Raina’s Function. Symmetry. 2024; 16(4):457. https://doi.org/10.3390/sym16040457
Chicago/Turabian StyleVivas-Cortez, Miguel, Ghulam Murtaza Baig, Muhammad Uzair Awan, and Kamel Brahim. 2024. "pq-Simpson’s Type Inequalities Involving Generalized Convexity and Raina’s Function" Symmetry 16, no. 4: 457. https://doi.org/10.3390/sym16040457
APA StyleVivas-Cortez, M., Baig, G. M., Awan, M. U., & Brahim, K. (2024). pq-Simpson’s Type Inequalities Involving Generalized Convexity and Raina’s Function. Symmetry, 16(4), 457. https://doi.org/10.3390/sym16040457