Removable Singularities of Harmonic Functions on Stratified Sets
Abstract
:1. Introduction
2. Preliminaries
2.1. Stratified Sets
- The closure of every stratum is compact and the boundary is the union of some strata in ;
- For any two strata , the intersection of their closures is either empty or consists of some strata in .
2.2. Stratified Measure
2.3. Gradient, Divergence, and Laplacian
- u is continuous on U;
- For every free stratum , the restriction is twice continuously differentiable and the gradient of the restriction has a continuous extension to each point of any interior stratum contiguous to .
2.4. Mean Value Theorem and Harnack’s Inequality
3. The Main Result
4. Proof of Lemma 3
4.1. Gradient Estimate
4.2. Gradient Flux
4.3. Proof of Lemma 3
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mackey, G.W. Harmonic analysis as the exploration of symmetry—a historical survey. Bull. Amer. Math. Soc. 1980, 3, 543–698. [Google Scholar] [CrossRef]
- Weinberger, S. The Topological Classification of Stratified Spaces (Chicago Lectures in Mathematical Series); The University of Chicago Press: Chicago, IL, USA; London, UK, 1994. [Google Scholar]
- Courant, R. Über die Anwendung der Variationsrechnung in der Theorie der Eigenschwingungen und über neue Klassen von Funktionalgleichungen. Acta Math. 1926, 49, 1–68. [Google Scholar] [CrossRef]
- Schechter, M. A Generalization of the Problem of Transmission. Ann. Della Sc. Norm. Super. Pisa 1960, 14, 207–236. [Google Scholar]
- Kuchment, P. Quantum graphs: I. Some basic structures. Waves Random Media 2004, 14, 107–128. [Google Scholar] [CrossRef]
- Pokornyi, Y.; Penkin, O.; Pryadiev, V. Differential Equations on Graphs; Fizmatlit: Moscow, Russia, 2004. [Google Scholar]
- Nicaise, S.; Penkin, O. Poincaré–Perron’s method for the Dirichlet problem on stratified sets. J. Math. Anal. Appl. 2004, 296, 504–520. [Google Scholar] [CrossRef]
- Dairbekov, N.S.; Penkin, O.M.; Sarybekova, L.O. An analog of the Sobolev inequality on a stratified set. St. Petersburg Math. J. 2019, 30, 869–875. [Google Scholar] [CrossRef]
- Dairbekov, N.S.; Penkin, O.M.; Sarybekova, L.O. The Poincaré inequality and p-connectedness of a stratified Set. Sib. Math. J. 2018, 59, 1024–1033. [Google Scholar] [CrossRef]
- Pham, F. Introduction a l’étude Topologique des Singularités de Landau; Gauthier-Villars Éditeur: Paris, France, 1967. [Google Scholar]
- Oshchepkova, S.N.; Penkin, O.M. The mean-value theorem for elliptic operators on stratified sets. Math. Notes 2007, 81, 365–372. [Google Scholar] [CrossRef]
- Dairbekov, N.S.; Penkin, O.M.; Savasteev, D.V. Harnack’s inequality for harmonic functions on stratified sets. Sib. Math. J. 2023, 64, 1137–1144. [Google Scholar] [CrossRef]
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2001. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dairbekov, N.S.; Penkin, O.M.; Savasteev, D.V. Removable Singularities of Harmonic Functions on Stratified Sets. Symmetry 2024, 16, 486. https://doi.org/10.3390/sym16040486
Dairbekov NS, Penkin OM, Savasteev DV. Removable Singularities of Harmonic Functions on Stratified Sets. Symmetry. 2024; 16(4):486. https://doi.org/10.3390/sym16040486
Chicago/Turabian StyleDairbekov, Nurlan S., Oleg M. Penkin, and Denis V. Savasteev. 2024. "Removable Singularities of Harmonic Functions on Stratified Sets" Symmetry 16, no. 4: 486. https://doi.org/10.3390/sym16040486
APA StyleDairbekov, N. S., Penkin, O. M., & Savasteev, D. V. (2024). Removable Singularities of Harmonic Functions on Stratified Sets. Symmetry, 16(4), 486. https://doi.org/10.3390/sym16040486