Domain Transformation of Distortion Costs for Efficient JPEG Steganography with Symmetric Embedding
Abstract
:1. Introduction
- A deep investigation into the transformation of distortion costs from the spatial to the JPEG domain is conducted.
- A simple yet efficient closed-form expression for the distortion cost cross-domain transformation is developed.
- The transformation expression is executed in a block-wise manner, ensuring computational efficiency.
- Comprehensive experiments validate the effectiveness of the proposed scheme in terms of both steganographic security and computational complexity.
2. Preliminaries
2.1. Notations and Basic Concepts
2.2. Distortion Measure
3. The Proposed Distortion Cost Cross-Domain Transformation Method
3.1. Motivation and Feasibility
3.2. Expression for the Distortion Cost Cross-Domain Transformation
Algorithm 1: Distortion cost cross-domain transformation |
Input: A JPEG image Output: The JPEG distortion costs for
|
4. Experimental Results
4.1. Experimental Settings
4.1.1. Image Datasets
4.1.2. Steganographic Schemes
4.1.3. Steganalyzers
4.2. Comparison with Prior Work
4.3. Practical Evaluation of Computational Complexity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalifa, A.; Guzman, A. Imperceptible image steganography using symmetry-adapted deep learning techniques. Symmetry 2022, 14, 1325. [Google Scholar] [CrossRef]
- Li, X.; Guo, D.; Qin, C. Diversified cover selection for image steganography. Symmetry 2023, 15, 2024. [Google Scholar] [CrossRef]
- Muralidharan, T.; Cohen, A.; Cohen, A.; Nissim, N. The infinite race between steganography and steganalysis in images. Signal Process 2022, 201, 108711. [Google Scholar] [CrossRef]
- Shehab, D.A.; Alhaddad, M.J. Comprehensive survey of multimedia steganalysis: Techniques, evaluations, and trends in future research. Symmetry 2022, 14, 117. [Google Scholar] [CrossRef]
- Setiadi, D.R.I.M.; Rustad, S.; Andono, P.N.; Shidik, G.F. Digital image steganography survey and investigation (goal, assessment, method, development, and dataset). Signal Process. 2023, 206, 108908. [Google Scholar] [CrossRef]
- Milosav, P.; Milosavljević, M.; Banjac, Z. Steganographic method in selected areas of the stego-carrier in the spatial domain. Symmetry 2023, 15, 1015. [Google Scholar] [CrossRef]
- Filler, T.; Fridrich, J. Gibbs construction in steganography. IEEE Trans. Inf. Forensics Secur. 2010, 5, 705–720. [Google Scholar] [CrossRef]
- Filler, T.; Judas, J.; Fridrich, J. Minimizing embedding impact in steganography using trellis-coded quantization. In Proceedings of the Media Forensics and Security II, San Jose, CA, USA, 18–20 January 2010; Volume 7541, pp. 38–51. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W.; Li, L.; Zhou, H.; Yu, N. Designing near-optimal steganographic codes in practice based on polar codes. IEEE Trans. Commun. 2020, 68, 3948–3962. [Google Scholar] [CrossRef]
- Holub, V.; Fridrich, J. Designing steganographic distortion using directional filters. In Proceedings of the 2012 IEEE International Workshop on Information Forensics and Security, Tenerife, Spain, 2–5 December 2012; pp. 234–239. [Google Scholar] [CrossRef]
- Holub, V.; Fridrich, J.; Denemark, T. Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Li, B.; Wang, M.; Huang, J.; Li, X. A new cost function for spatial image steganography. In Proceedings of the 2014 IEEE International Conference on Image Processing, Paris, France, 27–30 October 2014; pp. 4206–4210. [Google Scholar] [CrossRef]
- Liu, Q.; Su, W.; Ni, J.; Hu, X.; Huang, J. An efficient distortion cost function design for image steganography in spatial domain using quaternion representation. Signal Process. 2023, 219, 109370. [Google Scholar] [CrossRef]
- Guo, L.; Ni, J.; Su, W.; Tang, C.; Shi, Y.Q. Using statistical image model for JPEG steganography: Uniform embedding revisited. IEEE Trans. Inf. Forensics Secur. 2015, 10, 2669–2680. [Google Scholar] [CrossRef]
- Su, W.; Ni, J.; Li, X.; Shi, Y.Q. A new distortion function design for JPEG steganography using the generalized uniform embedding strategy. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 3545–3549. [Google Scholar] [CrossRef]
- Fridrich, J.; Kodovský, J. Multivariate gaussian model for designing additive distortion for steganography. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 2949–2953. [Google Scholar] [CrossRef]
- Sedighi, V.; Cogranne, R.; Fridrich, J. Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 2016, 11, 221–234. [Google Scholar] [CrossRef]
- Cogranne, R.; Giboulot, Q.; Bas, P. Efficient steganography in JPEG images by minimizing performance of optimal detector. IEEE Trans. Inf. Forensics Secur. 2022, 17, 1328–1343. [Google Scholar] [CrossRef]
- Yang, J.; Ruan, D.; Huang, J.; Kang, X.; Shi, Y.Q. An embedding cost learning framework using GAN. IEEE Trans. Inf. Forensics Secur. 2020, 15, 839–851. [Google Scholar] [CrossRef]
- Tang, W.; Li, B.; Barni, M.; Li, J.; Huang, J. An automatic cost learning framework for image steganography using deep reinforcement learning. IEEE Trans. Inf. Forensics Secur. 2021, 16, 952–967. [Google Scholar] [CrossRef]
- Li, W.; Wu, S.; Li, B.; Tang, W.; Zhang, X. Payload-independent direct cost learning for image steganography. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 1970–1975. [Google Scholar] [CrossRef]
- Yang, J.; Ruan, D.; Kang, X.; Shi, Y.Q. Towards automatic embedding cost learning for JPEG steganography. In Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, Paris, France, 3–5 July 2019; pp. 37–46. [Google Scholar] [CrossRef]
- Tang, W.; Li, B.; Barni, M.; Li, J.; Huang, J. Improving cost learning for JPEG steganography by exploiting JPEG domain knowledge. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4081–4095. [Google Scholar] [CrossRef]
- Hu, X.; Ni, J.; Shi, Y.Q. Efficient JPEG steganography using domain transformation of embedding entropy. IEEE Signal Process. Lett. 2018, 25, 773–777. [Google Scholar] [CrossRef]
- Su, W.; Ni, J.; Hu, X.; Huang, J. New design paradigm of distortion cost function for efficient JPEG steganography. Signal Process. 2022, 190, 108319. [Google Scholar] [CrossRef]
- Holub, V.; Fridrich, J. Low-complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans. Inf. Forensics Secur. 2015, 10, 219–228. [Google Scholar] [CrossRef]
- Holub, V.; Fridrich, J. Phase-aware projection model for steganalysis of JPEG images. In Proceedings of the Media Watermarking, Security, and Forensics 2015, San Francisco, CA, USA, 9–11 February 2015; Volume 9409, p. 94090T. [Google Scholar] [CrossRef]
- Song, X.; Liu, F.; Yang, C.; Luo, X.; Zhang, Y. Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, Portland, OR, USA, 17–19 June 2015; pp. 15–23. [Google Scholar] [CrossRef]
- Kodovský, J.; Fridrich, J. Steganalysis of JPEG images using rich models. In Proceedings of the Media Watermarking, Security, and Forensics 2012, Burlingame, CA, USA, 23–25 January 2012; Volume 8303, p. 83030A. [Google Scholar] [CrossRef]
- Bas, P.; Filler, T.; Pevný, T. “Break Our Steganographic System”: The ins and outs of organizing BOSS. In Proceedings of the 13th International Conference on Information Hiding, Prague, Czech Republic, 18–20 May 2011; Springer: Berlin/Heidelberg, Germany; pp. 59–70. [Google Scholar] [CrossRef]
- Wallace, G. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, xviii–xxxiv. [Google Scholar] [CrossRef]
- Filler, T.; Fridrich, J. Minimizing additive distortion functions with non-binary embedding operation in steganography. In Proceedings of the 2010 IEEE International Workshop on Information Forensics and Security, Seattle, WA, USA, 12–15 December 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Filler, T.; Judas, J.; Fridrich, J. Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 2011, 6, 920–935. [Google Scholar] [CrossRef]
- Denemark, T.; Boroumand, M.; Fridrich, J. Steganalysis features for content-adaptive JPEG steganography. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1736–1746. [Google Scholar] [CrossRef]
- Kodovský, J.; Fridrich, J.; Holub, V. Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 2012, 7, 432–444. [Google Scholar] [CrossRef]
Scheme | QF = 75 | QF = 95 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
UERD | ||||||||||
JUNIWARD | ||||||||||
JMiPOD | ||||||||||
DCDT-SUNI | ||||||||||
DCDT-MiPOD | ||||||||||
DCDT-HiLL | ||||||||||
JC-SUNI | ||||||||||
JC-MiPOD | ||||||||||
JC-HiLL |
Scheme | QF = 75 | QF = 95 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
UERD | ||||||||||
JUNIWARD | ||||||||||
JMiPOD | ||||||||||
DCDT-SUNI | ||||||||||
DCDT-MiPOD | ||||||||||
DCDT-HiLL | ||||||||||
JC-SUNI | ||||||||||
JC-MiPOD | ||||||||||
JC-HiLL |
Scheme | QF = 75 | QF = 95 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
UERD | ||||||||||
JUNIWARD | ||||||||||
JMiPOD | ||||||||||
DCDT-SUNI | ||||||||||
DCDT-MiPOD | ||||||||||
DCDT-HiLL | ||||||||||
JC-SUNI | ||||||||||
JC-MiPOD | ||||||||||
JC-HiLL |
Scheme | QF = 75 | QF = 95 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
UERD | ||||||||||
JUNIWARD | ||||||||||
JMiPOD | ||||||||||
DCDT-SUNI | ||||||||||
DCDT-MiPOD | ||||||||||
DCDT-HiLL | ||||||||||
JC-SUNI | ||||||||||
JC-MiPOD | ||||||||||
JC-HiLL |
QF | Average Time Consumption (ms) | ||
---|---|---|---|
UERD | JUNIWARD | JMiPOD | |
75 | |||
95 | |||
QF | Average Time Consumption (ms) | ||
DCDT-HiLL | DCDT-MiPOD | DCDT-SUNI | |
75 | |||
95 | |||
QF | Average Time Consumption (ms) | ||
JC-HiLL | JC-MiPOD | JC-SUNI | |
75 | |||
95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Ni, J. Domain Transformation of Distortion Costs for Efficient JPEG Steganography with Symmetric Embedding. Symmetry 2024, 16, 575. https://doi.org/10.3390/sym16050575
Pan Y, Ni J. Domain Transformation of Distortion Costs for Efficient JPEG Steganography with Symmetric Embedding. Symmetry. 2024; 16(5):575. https://doi.org/10.3390/sym16050575
Chicago/Turabian StylePan, Yuanfeng, and Jiangqun Ni. 2024. "Domain Transformation of Distortion Costs for Efficient JPEG Steganography with Symmetric Embedding" Symmetry 16, no. 5: 575. https://doi.org/10.3390/sym16050575
APA StylePan, Y., & Ni, J. (2024). Domain Transformation of Distortion Costs for Efficient JPEG Steganography with Symmetric Embedding. Symmetry, 16(5), 575. https://doi.org/10.3390/sym16050575