Features, Paradoxes and Amendments of Perturbative Non-Hermitian Quantum Mechanics
Abstract
:1. Introduction
2. Merits of Non-Hermitian Hamiltonians
2.1. Dyson-Inspired Simplifications of Schrödinger Equations
2.2. Analytic Continuations and Non-Unitary Open Systems
2.3. Dyson Maps and the Modified Concept of Locality
3. Norm-Ambiguity Paradox and Its Consequences
3.1. Random Perturbations and Pseudospectra
3.2. Norms in Non-Hermitian Models
3.3. Pseudospectra in Quasi-Hermitian Models
4. Amended Rayleigh–Schrödinger Construction
4.1. The Choice-of-Space Problem Revisited
4.2. Rayleigh–Schrödinger Construction Revisited
5. Discussion
5.1. Key Role Played by the Proof of Reality of Spectrum
5.2. The Requirement of Completeness of the Set of Observables
5.3. The Coordinate-Non-Observability Paradox
5.4. A Detour to Meaningful Complex Spectra
5.5. Real Spectra and the Paradox of Emergent Instabilities
5.6. Ultimate Challenge: Models Where the Metric Does Not Exist
6. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Quantum Mechanics in Quasi-Hermitian Representation
Appendix B. Rayleigh–Schrödinger Construction in
Appendix C. Open Questions behind Quasi-Hermitian Perturbations
Appendix D. Biorthonormalized Unperturbed Bases
References
- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef]
- Buslaev, V.; Grecchi, V. Equivalence of unstable anharmonic oscillators and double wells. J. Phys. A Math. Gen. 1993, 26, 5541–5549. [Google Scholar] [CrossRef]
- Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947–1118. [Google Scholar] [CrossRef]
- Bender, C.M. PT Symmetry in Quantum and Classical Physics; World Scientific: Singapore, 2018; (with contributions from Dorey, P.E.; Dunning, C.; Fring, A.; Hook, D.W.; Jones, H.F.; Kuzhel, S.; Levai, G.; Tateo, R.). [Google Scholar]
- Christodoulides, D.; Yang, J.-K. (Eds.) Parity-Time Symmetry and Its Applications; Springer: Singapore, 2018. [Google Scholar]
- Bagchi, B.; Ghosh, R.; Sen, S. Analogue Hawking Radiation as a Tunneling in a Two-Level PT-Symmetric System. Entropy 2023, 25, 1202. [Google Scholar] [CrossRef]
- Stone, M.H. On one-parameter unitary groups in Hilbert Space. Ann. Math. 1932, 33, 643–648. [Google Scholar] [CrossRef]
- Scholtz, F.G.; Geyer, H.B.; Hahne, F.J.W. Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle. Ann. Phys. 1992, 213, 74–101. [Google Scholar] [CrossRef]
- Dieudonne, J. Quasi-Hermitian Operators. In Proceedings of the International Symposium on Linear Spaces, Jerusalem, Israel, 5–12 July 1960; Pergamon: Oxford, UK, 1961; pp. 115–122. [Google Scholar]
- Mostafazadeh, A. Pseudo-Hermitian Representation of Quantum Mechanics. Int. J. Geom. Meth. Mod. Phys. 2010, 7, 1191–1306. [Google Scholar] [CrossRef]
- Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.; Znojil, M. (Eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Bender, C.M.; Milton, K.A. Nonperturbative Calculation of Symmetry Breaking in Quantum Field Theory. Phys. Rev. D 1997, 55, R3255. [Google Scholar] [CrossRef]
- Bender, C.M.; Wu, T.T. Anharmonic Oscillator. Phys. Rev. 1969, 184, 1231–1260. [Google Scholar] [CrossRef]
- Turbiner, A.; del Valle, D.C. Anharmonic oscillator: A solution. J. Phys. A Math. Theor. 2021, 54, 295404. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Znojil, M. Theory of response to perturbations in non-hermitian systems using five-Hilbert-space reformulation of unitary quantum mechanics. Entropy 2020, 22, 80. [Google Scholar] [CrossRef]
- Trefethen, L.N.; Embree, M. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Brody, D.C. Biorthogonal quantum mechanics. J. Phys. A Math. Theor. 2013, 47, 035305. [Google Scholar] [CrossRef]
- Znojil, M. Quasi-Hermitian formulation of quantum mechanics using two conjugate Schroedinger equations. Axioms 2023, 12, 644. [Google Scholar] [CrossRef]
- Dyson, F.J. General theory of spin-wave interactions. Phys. Rev. 1956, 102, 1217. [Google Scholar] [CrossRef]
- Janssen, D.; Dönau, F.; Frauendorf, S.; Jolos, R.V. Boson description of collective states. Nucl. Phys. A 1971, 172, 145–165. [Google Scholar] [CrossRef]
- Jones, H.F.; Mateo, J. An Equivalent Hermitian Hamiltonian for the non-Hermitian −x4 Potential. Phys. Rev. D 2006, 73, 085002. [Google Scholar] [CrossRef]
- Fernández, F.; Guardiola, R.; Ros, J.; Znojil, M. Strong-coupling expansions for the PT-symmetric oscillators V(r) = aix + b(ix)2 + c(ix)3. J. Phys. A Math. Gen. 1998, 31, 10105–10112. [Google Scholar] [CrossRef]
- Bender, C.M.; Dunne, G.V. Large-order perturbation theory for a non-Hermiitan PT-symmetric Hamiltonian. J. Math. Phys. 1999, 40, 4616–4621. [Google Scholar] [CrossRef]
- Koukoutsis, E.; Hizanidis, K.; Ram, A.K.; Vahala, G. Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media. Phys. Rev. A 2023, 107, 042215. [Google Scholar] [CrossRef]
- Jones, H.F. Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation. Phys. Rev. D 2008, 78, 065032. [Google Scholar] [CrossRef]
- Znojil, M. Scattering theory using smeared non-Hermitian potentials. Phys. Rev. D 2009, 80, 045009. [Google Scholar] [CrossRef]
- Messiah, A. Quantum Mechanics; North Holland: Amsterdam, The Netherlands, 1961. [Google Scholar]
- Roch, S.; Silberman, B. C∗-algebra techniques in numerical analysis. J. Oper. Theory 1996, 35, 241–280. [Google Scholar]
- Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J. Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys. 2015, 56, 103513. [Google Scholar] [CrossRef]
- Rotter, I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor. 2009, 42, 153001. [Google Scholar] [CrossRef]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge Univ. Press: Cambridge, UK, 2011. [Google Scholar]
- Jakubský, V. Thermodynamics of Pseudo-Hermitian Systems in Equilibrium. Mod. Phys. Lett. A 2007, 22, 1075–1084. [Google Scholar] [CrossRef]
- Znojil, M. Non-Hermitian interaction representation and its use in relativistic quantum mechanics. Ann. Phys. 2017, 385, 162–179. [Google Scholar] [CrossRef]
- Moise, A.A.A.; Cox, G.; Merkli, M. Entropy and entanglement in a bipartite quasi-Hermitian system and its Hermitian counterparts. Phys. Rev. A 2023, 108, 012223. [Google Scholar] [CrossRef]
- Caliceti, E.; Graffi, S.; Maioli, M. Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys. 1980, 75, 51–66. [Google Scholar] [CrossRef]
- Eremenko, A.; Gabrielov, A. Analytic continuation of eigenvalues of a quartic oscillator. Commun. Math. Phys. 2009, 287, 431. [Google Scholar] [CrossRef]
- Liu, Y.X.; Jiang, X.P.; Cao, J.P.; Chen, S. Non-Hermitian mobility edges in one-dimensional quasicrystals with parity-time symmetry. Phys. Rev. B 2020, 101, 174205. [Google Scholar] [CrossRef]
- Znojil, M. Three-Hilbert-space formulation of Quantum Mechanics. Symmetry Integr. Geom. Methods Appl. SIGMA 2009, 5, 001. [Google Scholar] [CrossRef]
- Ju, C.Y.; Miranowicz, A.; Chen, Y.N.; Chen, G.Y.; Nori, F. Emergent parallel transport and curvature in Hermitian and non-Hermitian quantum mechanics. Quantum 2024, 8, 1277. [Google Scholar] [CrossRef]
- Caliceti, E.; Graffi, S. Criteria for the Reality of the Spectrum of PT-Symmetric Schrödudinger Operators. In Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Bagarello, F., Gazeau, J.-P., Szafraniec, F., Znojil, M., Eds.; Wiley: Hoboken, NJ, USA, 2015; Chapter 4; pp. 189–240. [Google Scholar]
- Zezyulin, D.A.; Kartashov, Y.V.; Konotop, V.V. Metastable two-component solitons near an exceptional point. Phys. Rev. A 2021, 104, 023504. [Google Scholar] [CrossRef]
- Bagchi, B.; Ghosh, R.; Sen, S. Exceptional point in a coupled Swanson system. Europhys. Lett. 2022, 137, 50004. [Google Scholar] [CrossRef]
- Guria, C.; Zhong, Q.; Ozdemir, S.K.; Patil, Y.S.S.; El-Ganainy, R.; Harris, J.G.E. Resolving the topology of encircling multiple exceptional points. Nat. Commun. 2024, 15, 1369. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.A.; Batchelor, M.T. Exceptional points in the Baxter-Fendley free parafermion model. Scipost Phys. 2023, 15, 016. [Google Scholar] [CrossRef]
- Siegl, P.; Krejčiřík, D. On the metric operator for the imaginary cubic oscillator. Phys. Rev. D 2012, 86, 121702. [Google Scholar] [CrossRef]
- Berry, M.V. Physics of Nonhermitian Degeneracies. Czech. J. Phys. 2004, 54, 1039–1047. [Google Scholar] [CrossRef]
- Bagarello, F.; Fring, A. A non selfadjoint model on a two dimensional noncommutative space with unbound metric. Phys. Rev. A 2013, 88, 042119. [Google Scholar] [CrossRef]
- Krejčiřík, D.; Siegl, P. Elements of spectral theory without the spectral theorem. In Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Bagarello, F., Gazeau, J.-P., Szafraniec, F., Znojil, M., Eds.; Wiley: Hoboken, NJ, USA, 2015; Chapter 5; pp. 241–292. [Google Scholar]
- Günther, U.; Stefani, F. IR-truncated PT-symmetric ix3 model and its asymptotic spectral scaling graph. arXiv 2019, arXiv:1901.08526. [Google Scholar]
- Ramirez, R.; Reboiro, M.; Tielas, D. Exceptional Points from the Hamiltonian of a hybrid physical system: Squeezing and anti-Squeezing. Eur. Phys. J. D 2020, 74, 193. [Google Scholar] [CrossRef]
- Brody, D.C.; Hughston, L.P. Quantum measurement of space-time events. J. Phys. A Math. Theor. 2021, 54, 235304. [Google Scholar] [CrossRef]
- Alase, A.; Karuvade, S.; Scandolo, C.M. The operational foundations of PT-symmetric and quasi-Hermitian quantum theory. J. Phys. A Math. Theor. 2022, 55, 244003. [Google Scholar] [CrossRef]
- Feinberg, J.; Riser, B. Pseudo-Hermitian random-matrix models: General formalism. Nucl. Phys. 2022, B 975, 115678. [Google Scholar] [CrossRef]
- Semorádová, I.; Siegl, P. Diverging eigenvalues in domain truncations of Schroedinger operators with complex potentials. SIAM J. Math. Anal. 2022, 54, 5064–5101. [Google Scholar] [CrossRef]
- Znojil, M. Time-dependent version of cryptohermitian quantum theory. Phys. Rev. D 2008, 78, 085003. [Google Scholar] [CrossRef]
- Wang, W.H.; Chen, Z.L.; Li, W. The metric operators for pseudo-Hermitian Hamiltonian. ANZIAM J. 2023, 65, 215–228. [Google Scholar] [CrossRef]
- Znojil, M. On the role of the normalization factors κn and of the pseudo-metric P in crypto-Hermitian quantum models. Symmetry Integr. Geom. Methods Appl. SIGMA 2008, 4, 001. [Google Scholar] [CrossRef]
- Ballesteros, A.; Ramírez, R.; Reboiro, M. Non-standard quantum algebras and finite dimensional PT-symmetric systems. J. Phys. A Math. Theor. 2024, 57, 035202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znojil, M. Features, Paradoxes and Amendments of Perturbative Non-Hermitian Quantum Mechanics. Symmetry 2024, 16, 629. https://doi.org/10.3390/sym16050629
Znojil M. Features, Paradoxes and Amendments of Perturbative Non-Hermitian Quantum Mechanics. Symmetry. 2024; 16(5):629. https://doi.org/10.3390/sym16050629
Chicago/Turabian StyleZnojil, Miloslav. 2024. "Features, Paradoxes and Amendments of Perturbative Non-Hermitian Quantum Mechanics" Symmetry 16, no. 5: 629. https://doi.org/10.3390/sym16050629
APA StyleZnojil, M. (2024). Features, Paradoxes and Amendments of Perturbative Non-Hermitian Quantum Mechanics. Symmetry, 16(5), 629. https://doi.org/10.3390/sym16050629