Isospin Symmetry Breaking in Atomic Nuclei
Abstract
:1. Introduction
2. Basic Concepts of Isospin Symmetry
3. Quantum Chromodynamics and Charge Symmetry Breaking
4. Classification of Charge-Dependent Nucleon–Nucleon Interaction
- Class I: isospin or charge-independent interaction commutes with the isospin operator
- Class II: the interaction in this category is charge symmetric, but breaks charge independence and can be written asIn the above equation, the charge symmetry operator, , changes sign for and again for and therefore the first term is invariant under the charge symmetry transformation. However, under an arbitrary rotation in the isospace, this term is not invariant and therefore breaks the charge independence. The second term in the above equation is isoscalar. The Coulomb interaction has the form of Equation (30).
- Class III: this class of forces breaks both charge symmetry and charge independence, but is symmetric under the exchange of particles in isospace and this is written as
- Class IV: this class of forces breaks charge symmetry and consequently the charge independence and is generally written asThe main contribution to the first term comes from photon and exchange terms, and for the second term, it is from the nucleon mass difference on and exchanges. It vanishes for neutron–neutron and proton–proton systems, but causes isospin mixing in the neutron–proton system.
5. Empirical Data on Isospin Symmetry Breaking
5.1. Mass Differences in Mirror and Analogue States
5.2. Scattering Lengths
6. Isobaric Mass Multiplet Equation (IMME) and Nolen–Schiffer Anomaly
6.1. Isobaric Mass Multiplet Equation
6.2. Nolen–Schiffer Anomaly
7. Nuclear Energy Density Functional Approach and Isospin Symmetry Breaking
7.1. Timeline of the DFT in Nuclear Physics
7.2. Isospin Invariant Nuclear DFT
7.3. Approximate Isospin Projection Method
7.4. Isospin Symmetry Breaking in Nuclear DFT
7.5. Results and Discussion
8. Spherical Shell Model Approach to Isospin Symmetry Breaking
- Coulomb interactions among protons;
- mass differences between proton and neutron;
- the charge-dependent nature of nuclear forces.
8.1. No-Core Shell Model Results
8.2. Shell Model Results
9. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Lowest Order Perturbation
Appendix B. Densities in Cylindrical Basis
- (a)
- We have for the derivatives of spin matrices
- (b)
- Further, the components of the operator , are given by
- (c)
- For the Laplacian, we haveTherefore
- Particle DensityThe particle-hole (ph) isoscalar and isovector non-local densities are expressed in terms of the quasiparticle wave functions and isospin Pauli matrices asUsing the cylindrical expansion of the quasiparticle wave function Equation (A25), we obtain
- Vector Spin DensityThe ph spin isoscalar and isovector densities are expressed as
References
- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Nambu, Y. Quasi-Particles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev. 1960, 117, 648–663. [Google Scholar] [CrossRef]
- Goldstone, J. Field Theories with Superconductor Solutions. Nuovo Cim. 1961, 19, 154–164. [Google Scholar] [CrossRef]
- Chadwick, J. The existence of a neutron. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1932, 136, 692–708. [Google Scholar] [CrossRef]
- Heisenberg, W. Über den Bau der Atomkerne. I. In Original Scientific Papers/Wissenschaftliche Originalarbeiten; Springer: Berlin/Heidelberg, Germany, 1989; pp. 197–207. [Google Scholar] [CrossRef]
- Wigner, E. On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei. Phys. Rev. 1937, 51, 106–119. [Google Scholar] [CrossRef]
- Gell-Mann, M. A schematic model of baryons and mesons. Phys. Lett. 1964, 8, 214–215. [Google Scholar] [CrossRef]
- Weinberg, S.; Treiman, S.B. Electromagnetic Corrections to Isotopic Spin Conservation. Phys. Rev. 1959, 116, 465–468. [Google Scholar] [CrossRef]
- Wigner, E.P. Proceedings of the Robert A. Welsch Conference on Chemical Research; R.A. Welsch Foundation: Houston, TX, USA, 1957; Volume 1, p. 67. [Google Scholar]
- Henley, E. Isospin in Nuclear Physics; North-Holland: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Miller, G.; Nefkens, B.; Šlaus, I. Charge symmetry, quarks and mesons. Phys. Rep. 1990, 194, 1–116. [Google Scholar] [CrossRef]
- Bentley, M.; Lenzi, S. Coulomb energy differences between high-spin states in isobaric multiplets. Prog. Part. Nucl. Phys. 2007, 59, 497–561. [Google Scholar] [CrossRef]
- Machleidt, R.; Sammarruca, F. Chiral EFT based nuclear forces: Achievements and challenges. Phys. Scr. 2016, 91, 083007. [Google Scholar] [CrossRef]
- Hatsuda, T. Nuclear Force and Nuclear Physics from Lattice Quantum Chromodynamics. J. Phys. Conf. Ser. 2012, 381, 012020. [Google Scholar] [CrossRef]
- Henley, E.; Miller, G. Mesons in Nuclei; North-Holland: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Wilczek, F. Particle physics: A weighty mass difference. Nature 2015, 520, 303–304. [Google Scholar] [CrossRef]
- Borsanyi, S.; Durr, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Lellouch, L.; Lippert, T.; Portelli, A.; Szabo, K.K.; et al. Ab initio calculation of the neutron-proton mass difference. Science 2015, 347, 1452–1455. [Google Scholar] [CrossRef]
- Wachter, B.; Mertelmeier, T.; Hofmann, H.M. Differences in the mirror reactions 3H(p,γ)4He and 3He(n,γ)4He from an isospin conserving nuclear force. Phys. Rev. C 1988, 38, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.A.; Opper, A.K.; Stephenson, E.J. Charge Symmetry Breaking and QCD. Annu. Rev. Nucl. Part. Sci. 2006, 56, 253–292. [Google Scholar] [CrossRef]
- Machleidt, R.; Müther, H. Charge symmetry breaking of the nucleon-nucleon interaction: ρ-ω mixing versus nucleon mass splitting. Phys. Rev. C 2001, 63, 034005. [Google Scholar] [CrossRef]
- Dong, J.M.; Zhang, Y.H.; Zuo, W.; Gu, J.Z.; Wang, L.J.; Sun, Y. Generalized isobaric multiplet mass equation and its application to the Nolen-Schiffer anomaly. Phys. Rev. C 2018, 97, 021301. [Google Scholar] [CrossRef]
- Ormand, W.; Brown, B. Empirical isospin-nonconserving hamiltonians for shell-model calculations. Nucl. Phys. A 1989, 491, 1–23. [Google Scholar] [CrossRef]
- Rose, M. Elementary Theory of Angular Momentum; Structure of Matter Series; Wiley: Hoboken, NJ, USA, 1957. [Google Scholar]
- Edmonds, A. Angular Momentum in Quantum Mechanics; Investigations in Physics Series; Princeton University Press: Princeton, NJ, USA, 1957. [Google Scholar]
- Sagawa, H.; Naito, T.; Roca-Maza, X.; Hatsuda, T. QCD-based charge symmetry breaking interaction and the Okamoto-Nolen-Schiffer anomaly. Phys. Rev. C 2024, 109, L011302. [Google Scholar] [CrossRef]
- MacCormick, M.; Audi, G. Evaluated experimental isobaric analogue states from T=1/2 to T=3 and associated IMME coefficients. Nucl. Phys. A 2014, 925, 61–95. [Google Scholar] [CrossRef]
- Danielewicz, P. Surface symmetry energy. Nucl. Phys. A 2003, 727, 233–268. [Google Scholar] [CrossRef]
- Auerbach, N.; Hüfner, J.; Kerman, A.K.; Shakin, C.M. A Theory of Isobaric Analog Resonances. Rev. Mod. Phys. 1972, 44, 48–125. [Google Scholar] [CrossRef]
- Nolen, J.A.; Schiffer, J.P. Coulomb Energies. Annu. Rev. Nucl. Sci. 1969, 19, 471–526. [Google Scholar] [CrossRef]
- Auerbach, N. Coulomb effects in nuclear structure. Phys. Rep. 1983, 98, 273–341. [Google Scholar] [CrossRef]
- Parr, R.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Cola, G. Nuclear density functional theory. Adv. Phys. X 2020, 5, 1740061. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Bender, M.; Heenen, P.H.; Reinhard, P.G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 2003, 75, 121–180. [Google Scholar] [CrossRef]
- Skyrme, T.H.R. The Nuclear Surface. Philos. Mag. 1956, 1, 1043–1054. [Google Scholar] [CrossRef]
- Skyrme, T. The effective nuclear potential. Nucl. Phys. 1958, 9, 615–634. [Google Scholar] [CrossRef]
- Skyrme, T. The spin-orbit interaction in nuclei. Nucl. Phys. 1958, 9, 635–640. [Google Scholar] [CrossRef]
- Vautherin, D.; Brink, D.M. Hartree-Fock Calculations with Skyrme’s Interaction. I. Spherical Nuclei. Phys. Rev. C 1972, 5, 626–647. [Google Scholar] [CrossRef]
- Beiner, M.; Flocard, H.; Van Giai, N.; Quentin, P. Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: (I). Spherical description. Nucl. Phys. A 1975, 238, 29–69. [Google Scholar] [CrossRef]
- Treiner, J.; Krivine, H.; Bohigas, O.; Martorell, J. Nuclear incompressibility: From finite nuclei to nuclear matter. Nucl. Phys. A 1981, 371, 253–287. [Google Scholar] [CrossRef]
- Krivine, H.; Treiner, J.; Bohigas, O. Derivation of a fluid-dynamical lagrangian and electric giant resonances. Nucl. Phys. A 1980, 336, 155–184. [Google Scholar] [CrossRef]
- Bartel, J.; Quentin, P.; Brack, M.; Guet, C.; Håkansson, H.B. Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 1982, 386, 79–100. [Google Scholar] [CrossRef]
- Reinhard, P.G.; Flocard, H. Nuclear effective forces and isotope shifts. Nucl. Phys. A 1995, 584, 467–488. [Google Scholar] [CrossRef]
- Tajima, N.; Bonche, P.; Flocard, H.; Heenen, P.H.; Weiss, M. Self-consistent calculation of charge radii of Pb isotopes. Nucl. Phys. A 1993, 551, 434–450. [Google Scholar] [CrossRef]
- Ring, P. Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 1996, 37, 193–263. [Google Scholar] [CrossRef]
- Chamel, N.; Pearson, J.M.; Fantina, A.F.; Ducoin, C.; Goriely, S.; Pastore, A. Brussels–Montreal Nuclear Energy Density Functionals, from Atomic Masses to Neutron Stars. Acta Phys. Pol. B 2015, 46, 349. [Google Scholar] [CrossRef]
- Goriely, S.; Chamel, N.; Pearson, J.M. Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals. Phys. Rev. C 2013, 88, 061302. [Google Scholar] [CrossRef]
- Goriely, S.; Chamel, N.; Pearson, J.M. Skyrme-Hartree-Fock-Bogoliubov Nuclear Mass Formulas: Crossing the 0.6 MeV Accuracy Threshold with Microscopically Deduced Pairing. Phys. Rev. Lett. 2009, 102, 152503. [Google Scholar] [CrossRef]
- Kucharek, H.; Ring, P. Relativistic field theory of superfluidity in nuclei. Z. Phys. Hadrons Nucl. 1991, 339, 23–35. [Google Scholar] [CrossRef]
- Dechargé, J.; Gogny, D. Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei. Phys. Rev. C 1980, 21, 1568–1593. [Google Scholar] [CrossRef]
- Chappert, F.; Pillet, N.; Girod, M.; Berger, J.F. Gogny force with a finite-range density dependence. Phys. Rev. C 2015, 91, 034312. [Google Scholar] [CrossRef]
- Nakada, H. Semi-realistic nucleon-nucleon interactions with improved neutron-matter properties. Phys. Rev. C 2013, 87, 014336. [Google Scholar] [CrossRef]
- Behera, B.; Viñas, X.; Bhuyan, D.M.; Routray, T.; Sharma, B.; Patra, S. Simple effective interaction: Infinite nuclear matter and finite nuclei. J. Phys. G Nucl. Part. Phys. 2013, 40, 095105. [Google Scholar] [CrossRef]
- Baldo, M.; Robledo, L.M.; Schuck, P.; Viñas, X. New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state. Phys. Rev. C 2013, 87, 064305. [Google Scholar] [CrossRef]
- Baldo, M.; Robledo, L.; Viñas, X. The Barcelona Catania Paris Madrid energy density functional. Eur. Phys. J. A 2023, 59, 156. [Google Scholar] [CrossRef]
- Giuliani, S.A.; Robledo, L.M. Odd nuclei and quasiparticle excitations within the Barcelona Catania Paris Madrid energy density functional. Phys. Rev. C 2024, 109, 044321. [Google Scholar] [CrossRef]
- Dutra, M.; Lourenço, O.; Sá Martins, J.S.; Delfino, A.; Stone, J.R.; Stevenson, P.D. Skyrme interaction and nuclear matter constraints. Phys. Rev. C 2012, 85, 035201. [Google Scholar] [CrossRef]
- Kortelainen, M.; Lesinski, T.; Moré, J.; Nazarewicz, W.; Sarich, J.; Schunck, N.; Stoitsov, M.V.; Wild, S. Nuclear energy density optimization. Phys. Rev. C 2010, 82, 024313. [Google Scholar] [CrossRef]
- Wild, S.M.; Sarich, J.; Schunck, N. Derivative-free optimization for parameter estimation in computational nuclear physics. J. Phys. G Nucl. Part. Phys. 2015, 42, 034031. [Google Scholar] [CrossRef]
- Kortelainen, M.; McDonnell, J.; Nazarewicz, W.; Reinhard, P.G.; Sarich, J.; Schunck, N.; Stoitsov, M.V.; Wild, S.M. Nuclear energy density optimization: Large deformations. Phys. Rev. C 2012, 85, 024304. [Google Scholar] [CrossRef]
- Kortelainen, M.; McDonnell, J.; Nazarewicz, W.; Olsen, E.; Reinhard, P.G.; Sarich, J.; Schunck, N.; Wild, S.M.; Davesne, D.; Erler, J.; et al. Nuclear energy density optimization: Shell structure. Phys. Rev. C 2014, 89, 054314. [Google Scholar] [CrossRef]
- Raimondi, F.; Carlsson, B.G.; Dobaczewski, J. Effective pseudopotential for energy density functionals with higher-order derivatives. Phys. Rev. C 2011, 83, 054311. [Google Scholar] [CrossRef]
- Zurek, L.; Bogner, S.K.; Furnstahl, R.J.; Navarro Pérez, R.; Schunck, N.; Schwenk, A. Optimized nuclear energy density functionals including long-range pion contributions. Phys. Rev. C 2024, 109, 014319. [Google Scholar] [CrossRef]
- Goriely, S.; Samyn, M.; Heenen, P.H.; Pearson, J.M.; Tondeur, F. Hartree-Fock mass formulas and extrapolation to new mass data. Phys. Rev. C 2002, 66, 024326. [Google Scholar] [CrossRef]
- Samyn, M.; Goriely, S.; Heenen, P.H.; Pearson, J.; Tondeur, F. A Hartree–Fock–Bogoliubov mass formula. Nucl. Phys. A 2002, 700, 142–156. [Google Scholar] [CrossRef]
- Goodman, A.L. Hartree–Fock–Bogoliubov theory with applications to nuclei. Adv. Nucl. Phys. 1979, 11, 6124859. [Google Scholar]
- Satuła, W.; Wyss, R. Competition between T = 0 and T = 1 pairing in proton-rich nuclei. Phys. Lett. B 1997, 393, 1–6. [Google Scholar] [CrossRef]
- Frauendorf, S.G.; Sheikh, J.A. Cranked shell model and isospin symmetry near N = Z. Nucl. Phys. A 1999, 645, 509–535. [Google Scholar] [CrossRef]
- Terasaki, J.; Wyss, R.; Heenen, P.H. Onset of T=0 pairing and deformations in high spin states of the N = Z nucleus 48Cr. Phys. Lett. B 1998, 437, 1–6. [Google Scholar] [CrossRef]
- Sheikh, J.A.; Wyss, R. Isovector and isoscalar superfluid phases in rotating nuclei. Phys. Rev. C 2000, 62, 051302. [Google Scholar] [CrossRef]
- Márquez Romero, A.; Dobaczewski, J.; Pastore, A. Symmetry restoration in the mean-field description of proton-neutron pairing. Phys. Lett. B Nucl. Elem. Part. High Energy Phys. 2019, 795, 177–182. [Google Scholar] [CrossRef]
- Perlińska, E.; Rohoziński, S.G.; Dobaczewski, J.; Nazarewicz, W. Local density approximation for proton-neutron pairing correlations: Formalism. Phys. Rev. C 2004, 69, 014316. [Google Scholar] [CrossRef]
- Sato, K.; Dobaczewski, J.; Nakatsukasa, T.; Satuła, W. Energy-density-functional calculations including proton-neutron mixing. Phys. Rev. C 2013, 88, 061301. [Google Scholar] [CrossRef]
- Sheikh, J.A.; Hinohara, N.; Dobaczewski, J.; Nakatsukasa, T.; Nazarewicz, W.; Sato, K. Isospin-invariant Skyrme energy-density-functional approach with axial symmetry. Phys. Rev. C 2014, 89, 054317. [Google Scholar] [CrossRef]
- Caurier, E.; Poves, A.; Zuker, A. Hartree-Fock versus isospin projected Hartree-Fock in nuclei with neutron excess. Phys. Lett. B 1980, 96, 11–14. [Google Scholar] [CrossRef]
- Caurier, E.; Poves, A. An isospin projected Hartree-Fock description of proton and neutron radii. Nucl. Phys. A 1982, 385, 407–429. [Google Scholar] [CrossRef]
- Satuła, W.; Dobaczewski, J.; Nazarewicz, W.; Rafalski, M. Isospin Mixing in Nuclei within the Nuclear Density Functional Theory. Phys. Rev. Lett. 2009, 103, 012502. [Google Scholar] [CrossRef]
- Satuła, W.; Dobaczewski, J.; Nazarewicz, W.; Rafalski, M. Isospin-symmetry restoration within the nuclear density functional theory: Formalism and applications. Phys. Rev. C 2010, 81, 054310. [Google Scholar] [CrossRef]
- Sheikh, J.A.; Dobaczewski, J.; Ring, P.; Robledo, L.M.; Yannouleas, C. Symmetry restoration in mean-field approaches. J. Phys. G Nucl. Part. Phys. 2021, 48, 123001. [Google Scholar] [CrossRef]
- Lacroix, D.; Duguet, T.; Bender, M. Configuration mixing within the energy density functional formalism: Removing spurious contributions from nondiagonal energy kernels. Phys. Rev. C 2009, 79, 044318. [Google Scholar] [CrossRef]
- Bender, M.; Duguet, T.; Lacroix, D. Particle-number restoration within the energy density functional formalism. Phys. Rev. C 2009, 79, 044319. [Google Scholar] [CrossRef]
- Duguet, T.; Bender, M.; Bennaceur, K.; Lacroix, D.; Lesinski, T. Particle-number restoration within the energy density functional formalism: Nonviability of terms depending on noninteger powers of the density matrices. Phys. Rev. C 2009, 79, 044320. [Google Scholar] [CrossRef]
- Sheikh, J.A.; Ali, R.N. Symmetry projection in atomic nuclei. Eur. Phys. J. Spec. Top. 2020, 229, 2555–2602. [Google Scholar] [CrossRef]
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Physics and Astronomy Online Library, Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Bączyk, P.; Dobaczewski, J.; Konieczka, M.; Satuła, W.; Nakatsukasa, T.; Sato, K. Isospin-symmetry breaking in masses of N≃Z nuclei. Phys. Lett. B 2018, 778, 178–183. [Google Scholar] [CrossRef]
- Schunck, N.; Dobaczewski, J.; Satuła, W.; Bączyk, P.; Dudek, J.; Gao, Y.; Konieczka, M.; Sato, K.; Shi, Y.; Wang, X.; et al. Solution of the Skyrme-Hartree–Fock–Bogolyubovequations in the Cartesian deformed harmonic-oscillator basis. (VIII) hfodd (v2.73y): A new version of the program. Comput. Phys. Commun. 2017, 216, 145–174. [Google Scholar] [CrossRef]
- Baczyk, P.; Dobaczewski, J.; Konieczka, M.; Satuła, W. Strong-interaction Isospin-symmetry Breaking Within the Density Functional Theory. In Proceedings of the XXII Nuclear Physics Workshop “Marie and Pierre Curie” Essential Problems in Nuclear Physics. Acta Phys. Pol. B Proc. Suppl. 2015, 8, 539. [Google Scholar] [CrossRef]
- Cohen, S.; Kurath, D. Effective interactions for the 1p shell. Nucl. Phys. 1965, 73, 1–24. [Google Scholar] [CrossRef]
- Wildenthal, B. Empirical strengths of spin operators in nuclei. Prog. Part. Nucl. Phys. 1984, 11, 5–51. [Google Scholar] [CrossRef]
- Brown, B.A.; Wildenthal, B.H. Status of the Nuclear Shell Model. Annu. Rev. Nucl. Part. Sci. 1988, 38, 29–66. [Google Scholar] [CrossRef]
- Brown, B.A.; Richter, W.A. New “USD” Hamiltonians for the sd shell. Phys. Rev. C 2006, 74, 034315. [Google Scholar] [CrossRef]
- Barrett, B.R.; Navrátil, P.; Vary, J.P. Ab initio no core shell model. Prog. Part. Nucl. Phys. 2013, 69, 131–181. [Google Scholar] [CrossRef]
- Sarma, C.; Srivastava, P. Nuclear structure study of 20–23 Na isotopes with ab initio no-core shell-model. arXiv 2023, arXiv:2310.17893. [Google Scholar] [CrossRef]
- Magilligan, A.; Brown, B.A. New isospin-breaking “USD” Hamiltonians for the sd shell. Phys. Rev. C 2020, 101, 064312. [Google Scholar] [CrossRef]
- Doleschall, P.; Borbély, I. Properties of the nonlocal NN interactions required for the correct triton binding energy. Phys. Rev. C 2000, 62, 054004. [Google Scholar] [CrossRef]
- Entem, D.R.; Machleidt, R. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 2003, 68, 041001. [Google Scholar] [CrossRef]
- Wiringa, R.B.; Stoks, V.G.J.; Schiavilla, R. Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 1995, 51, 38–51. [Google Scholar] [CrossRef]
- Longfellow, B.; Gade, A.; Tostevin, J.A.; Simpson, E.C.; Brown, B.A.; Magilligan, A.; Bazin, D.; Bender, P.C.; Bowry, M.; Elman, B.; et al. Two-neutron knockout as a probe of the composition of states in 22Mg,23Al, and 24Si. Phys. Rev. C 2020, 101, 031303. [Google Scholar] [CrossRef]
- Littlejhon, R.G. Bound-State Perturbation Theory. Phys. 221A. 2021. Notes 23. Available online: https://bohr.physics.berkeley.edu/classes/221/1112/notes/pertth.pdf (accessed on 30 April 2024).
Nucleus | Mass (MeV) | Mass Difference (MeV) | |
---|---|---|---|
n | , | 939.57 | |
p | 938.28 | ||
3H | , | 2808.94 | |
3He | 2808.42 | ||
5He | , | 4667.87 | |
5Li | 4667.66 | ||
7Li | , | 6533.89 | |
7Be | 6534.24 |
Nucleon Pair | Scattering Length (fm) |
---|---|
−17.3 ± 0.4 | |
−18.8 ± 0.3 | |
−23.77 ± 0.09 |
A | Case | ISB = 0 | ISB = 1 | ||
---|---|---|---|---|---|
48 | Without Coulomb | 9.799936 | 0 | 10.1009095 | 0 |
With Coulomb | 11.078167 | −8.064794 | 11.2299655 | −8.4255485 | |
78 | Without Coulomb | 21.512809 | 0 | 21.9512975 | 0 |
With Coulomb | 23.7547175 | −10.9167065 | 24.001203 | −11.33256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheikh, J.A.; Rouoof, S.P.; Ali, R.N.; Rather, N.; Sarma, C.; Srivastava, P.C. Isospin Symmetry Breaking in Atomic Nuclei. Symmetry 2024, 16, 745. https://doi.org/10.3390/sym16060745
Sheikh JA, Rouoof SP, Ali RN, Rather N, Sarma C, Srivastava PC. Isospin Symmetry Breaking in Atomic Nuclei. Symmetry. 2024; 16(6):745. https://doi.org/10.3390/sym16060745
Chicago/Turabian StyleSheikh, Javid A., Syed P. Rouoof, Raja N. Ali, Niyaz Rather, Chandan Sarma, and Praveen C. Srivastava. 2024. "Isospin Symmetry Breaking in Atomic Nuclei" Symmetry 16, no. 6: 745. https://doi.org/10.3390/sym16060745
APA StyleSheikh, J. A., Rouoof, S. P., Ali, R. N., Rather, N., Sarma, C., & Srivastava, P. C. (2024). Isospin Symmetry Breaking in Atomic Nuclei. Symmetry, 16(6), 745. https://doi.org/10.3390/sym16060745