Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency
Abstract
:1. Introduction
2. Methods
2.1. Implantable Rx Design
2.2. Tx Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naser, M.; Al Bazar, H.; Abdel-Jaber, H. Investigational Study for Overcoming Security Challenges in Implantable Medical Devices. Int. J. Comput. Digit. Syst. 2024, 16, 1–10. [Google Scholar]
- Mahmud, S.; Nezaratizadeh, A.; Satriya, A.B.; Yoon, Y.K.; Ho, J.S.; Khalifa, A. Harnessing metamaterials for efficient wireless power transfer for implantable medical devices. Bioelectron. Med. 2024, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Moradi, F.; Heidari, H. Biointegrated and wirelessly powered implantable brain devices: A review. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Ahire, D.; Gond, V.J.; Chopade, J.J. Compensation topologies for wireless power transmission system in medical implant applications: A review. Biosens. Bioelectron. X 2022, 11, 100180. [Google Scholar] [CrossRef]
- Hu, X.Y.; Yin, W.L.; Du, F.; Zhang, C.; Xiao, P.; Li, G. Biomedical Applications and Challenges of In-body Implantable Antenna for Implantable Medical Devices: A Review. AEU-Int. J. Electron. Commun. 2023, 174, 155053. [Google Scholar] [CrossRef]
- Niotaki, K.; Carvalho, N.B.; Georgiadis, A.; Gu, X.; Hemour, S.; Wu, K.; Matos, D.; Belo, D.; Pereira, R.; Figueiredo, R.; et al. RF energy harvesting and wireless power transfer for energy autonomous wireless devices and RFIDs. IEEE J. Microw. 2023, 3, 763–782. [Google Scholar] [CrossRef]
- Stankiewicz, J.M. Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System. Energies 2023, 16, 2009. [Google Scholar] [CrossRef]
- Li, M.; Khaleghi, A.; Hasanvand, A.; Narayanan, R.P.; Balasingham, I. A New Design and Analysis for Metasurface-Based Near-field Magnetic Wireless Power Transfer for Deep Implants. IEEE Trans. Power Electron. 2024, 39, 6442–6454. [Google Scholar] [CrossRef]
- Shao, Y.; Kang, N.; Zhang, H.; Ma, R.; Liu, M.; Ma, C. A lightweight and robust drone MHz WPT system via novel coil design and impedance matching. IEEE Trans. Ind. Appl. 2023, 59, 3851–3864. [Google Scholar] [CrossRef]
- Sun, G.; Muneer, B.; Li, Y.; Zhu, Q. Ultracompact implantable design with integrated wireless power transfer and RF transmission capabilities. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 281–291. [Google Scholar] [CrossRef]
- Aboualalaa, M.; Pokharel, R.K.; Kaho, T. Extended Embedded Depth Using Cascaded Resonators Near-field WPT System with High Efficiency for Biomedical Implants. In Proceedings of the 2023 IEEE/MTT-S International Microwave Symposium-IMS 2023, San Diego, CA, USA, 11–16 June 2023; pp. 887–890. [Google Scholar]
- Verma, S.; Rano, D.; Hashmi, M. On the Use of Dual-Band SIMO and MIMO Based Defected Ground Structures in the Design, Characterization, and Validation of RF WPT System. IEEE Trans. Instrum. Meas. 2023, 72, 8003610. [Google Scholar] [CrossRef]
- Jabbari, A.; Simovski, C.; Mollaei, M.S. Tunable Dual-Band High Impedance Coil for Wireless Power Transfer Applications. IEEE Trans. Antennas Propag. 2023, 71, 9467–9476. [Google Scholar] [CrossRef]
- Zhang, Z.; Pang, H.; Georgiadis, A.; Cecati, C. Wireless power transfer—An overview. IEEE Trans. Ind. Electron. 2018, 66, 1044–1058. [Google Scholar] [CrossRef]
- Bercich, R.A.; Duffy, D.R.; Irazoqui, P.P. Far-field RF powering of implantable devices: Safety considerations. IEEE Trans. Biomed. Eng. 2013, 60, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Kumar, S.; Singh, N.; Kanaujia, B.K.; Singh, S.P.; Lay-Ekuakille, A. Far-Field Wireless Power Transmission and Measurement for a Leadless Transcatheter Pacing System. IEEE Trans. Instrum. Meas. 2023, 72, 5503912. [Google Scholar] [CrossRef]
- Park, J.H.; Tran, N.M.; Hwang, S.I.; Kim, D.I.; Choi, K.W. Design and implementation of 5.8 GHz RF wireless power transfer system. IEEE Access 2021, 9, 168520–168534. [Google Scholar] [CrossRef]
- Yousaf, M.; Mabrouk, I.B.; Faisal, F.; Zada, M.; Bashir, Z.; Akram, A.; Nedil, M.; Yoo, H. Compacted conformal implantable antenna with multitasking capabilities for ingestible capsule endoscope. IEEE Access 2020, 8, 157617–157627. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, P.; Han, J.; Li, L.; Huang, Y. Metamaterials and metasurfaces for wireless power transfer and energy harvesting. Proc. IEEE 2021, 110, 31–55. [Google Scholar] [CrossRef]
- Haerinia, M.; Shadid, R. Wireless power transfer approaches for medical implants: A review. Signals 2020, 1, 209–229. [Google Scholar] [CrossRef]
- Song, M.; Jayathurathnage, P.; Zanganeh, E.; Krasikova, M.; Smirnov, P.; Belov, P.; Kapitanova, P.; Simovski, C.; Tretyakov, S.; Krasnok, A. Wireless power transfer based on novel physical concepts. Nat. Electron. 2021, 4, 707–716. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; He, D.; Tang, D.; Chen, Z. Design of a mid-field wireless power transmission system for deep-tissue implants. Technol. Health Care 2023, 32, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.C.; Dash, J.C.; Sarkar, D. Parasitic Patch-based Power Transfer Efficiency Enhancement of WPT Systems using Circularly Polarized Antennas for IMDs. Authorea Preprints 2023. [Google Scholar] [CrossRef]
- Das, R.; Yoo, H. A multiband antenna associating wireless monitoring and nonleaky wireless power transfer system for biomedical implants. IEEE Trans. Microw. Theory Tech. 2017, 65, 2485–2495. [Google Scholar] [CrossRef]
- Basir, A.; Yoo, H. Efficient wireless power transfer system with a miniaturized quad-band implantable antenna for deep-body multitasking implants. IEEE Trans. Microw. Theory Tech. 2020, 68, 1943–1953. [Google Scholar] [CrossRef]
- Iqbal, A.; Al-Hasan, M.; Mabrouk, I.B.; Basir, A.; Nedil, M.; Yoo, H. Biotelemetry and wireless powering of biomedical implants using a rectifier integrated self-diplexing implantable antenna. IEEE Trans. Microw. Theory Tech. 2021, 69, 3438–3451. [Google Scholar] [CrossRef]
- Shaw, T.; Samanta, G.; Mitra, D. Efficient wireless power transfer system for implantable medical devices using circular polarized antennas. IEEE Trans. Antennas Propag. 2020, 69, 4109–4122. [Google Scholar] [CrossRef]
- Shah, S.M.A.; Zada, M.; Nasir, J.; Owais, O.; Yoo, H. Electrically-small antenna with low SAR for scalp and deep tissue biomedical devices. IEEE Access 2022, 10, 90971–90981. [Google Scholar] [CrossRef]
- Kiourti, A.; Nikita, K.S. A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables. IEEE Trans. Biomed. Eng. 2017, 64, 1422–1430. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.A.; Yoo, H. Radiative near-field wireless power transfer to scalp-implantable biotelemetric device. IEEE Trans. Microw. Theory Tech. 2020, 68, 2944–2953. [Google Scholar] [CrossRef]
- Yadav, M.P.; Singh, R.K.; Ray, K.P. A Comparative Investigation on Effect of Coupling in Aperture Coupled Microstrip Antennas. Prog. Electromagn. Res. C 2022, 124, 69–79. [Google Scholar] [CrossRef]
- Hasgall, P.A.; Di Gennaro, F.; Baumgartner, C.; Neufeld, E.; Lloyd, B.; Gosselin, M.C.; Payne, D.; Klingenböck, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues; ScienceOpen, Inc.: Lexington, MA, USA, 2018; Version 4.0, 15. [Google Scholar]
- Nguyen, N.; Ha-Van, N.; Seo, C. Midfield wireless power transfer for deep-tissue biomedical implants. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2270–2274. [Google Scholar] [CrossRef]
- Iqbal, A.; Sura, P.R.; Al-Hasan, M.; Mabrouk, I.B.; Denidni, T.A. Wireless power transfer system for deep-implanted biomedical devices. Sci. Rep. 2022, 12, 13689. [Google Scholar] [CrossRef] [PubMed]
Comparison Table | [33] | [34] | [30] | [16] | This Work | |
---|---|---|---|---|---|---|
WPT System | WPT Technique | Mid-Field | Near-Field | Near-Field | Far-Field | Mid-Field |
Transfer Distance | 55 mm | 60 mm | 0.1267 | 150 mm | 30 mm | |
PTE |S21|dB,% | −22.5 (0.56) | −37 (0.0199), −23.7 (0.42) | −25 (0.316) | −28.1 (0.1549) | −23 (0.501) | |
Implantable Antenna (Rx) | Dimensions () | 9 × 13 | 5 × 5.25 | 5.6 × 6 | 5 × 5 | 10 × 13 |
Operating Frequency | 1.5 GHz | 0.915, 2.45 GHz | 1900 MHz | 2.45 GHz | 1.71 GHz | |
Bandwidth (GHz) | 0.62 GHz | 1.45, 0.82 GHz | 0.9 MHz | 1.2 GHz | 0.99 GHz | |
S11 (dB) | −30 | −24, −29 | −25 | −40 | −32 | |
Gain (dB) | −20 | −22.1, −19.6 | −26.8 | −23 | −20 | |
Transmitting Antenna (Tx) | Dimensions () | 65 × 65 | 53 × 83 | 50 × 50 | 90 × 130 | 60 × 60 |
Operating Frequency | 1.5 GHz | 0.915, 2.45 GHz | 1900 MHz | 2.45 GHz | 1.71 GHz | |
Bandwidth (GHz) | 0.4 GHz | 1.9 GHz | 0.98 GHz | 0.9 GHz | 0.105 GHz | |
S22 (dB) | −17 | −30 | −30 | −30 | −47 | |
Gain (dB) | - | - | - | 8.1 | 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, D.; Ahmad, A.; Choi, D.-y. Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency. Symmetry 2024, 16, 753. https://doi.org/10.3390/sym16060753
Khan D, Ahmad A, Choi D-y. Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency. Symmetry. 2024; 16(6):753. https://doi.org/10.3390/sym16060753
Chicago/Turabian StyleKhan, Daud, Ashfaq Ahmad, and Dong-you Choi. 2024. "Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency" Symmetry 16, no. 6: 753. https://doi.org/10.3390/sym16060753
APA StyleKhan, D., Ahmad, A., & Choi, D. -y. (2024). Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency. Symmetry, 16(6), 753. https://doi.org/10.3390/sym16060753